LEADER 04780nam 2200469 450 001 996547957103316 005 20230618075737.0 010 $a9789811977848$b(electronic bk.) 010 $z9789811977831 024 7 $a10.1007/978-981-19-7784-8 035 $a(MiAaPQ)EBC7235225 035 $a(Au-PeEL)EBL7235225 035 $a(DE-He213)978-981-19-7784-8 035 $a(OCoLC)1376259618 035 $a(PPN)269659501 035 $a(EXLCZ)9926401622000041 100 $a20230618d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReinforcement learning for sequential decision and optimal control /$fShengbo Eben Li 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (484 pages) 311 08$aPrint version: Li, Shengbo Eben Reinforcement Learning for Sequential Decision and Optimal Control Singapore : Springer,c2023 9789811977831 327 $aChapter 1 Introduction of Reinforcement Learning -- Chapter 2 Principles of RL Problems -- Chapter 3 Model-free Indirect RL: Monte Carlo -- Chapter 4 Model-Free Indirect RL: Temporal-Difference -- Chapter 5 Model-based Indirect RL: Dynamic Programming -- Chapter 6 Indirect RL with Function Approximation -- Chapter 7 Direct RL with Policy Gradient -- Chapter 8 Infinite Horizon Approximate Dynamic Programming -- Chapter 9 Finite Horizon ADP and State Constraints -- Chapter 10 Deep Reinforcement Learning -- Chapter 11 Advanced RL Topics. 330 $aHave you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman?s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on. 606 $aReinforcement learning 606 $aControl theory$xData processing 615 0$aReinforcement learning. 615 0$aControl theory$xData processing. 676 $a006.31 700 $aLi$b Shengbo Eben$01350676 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a996547957103316 996 $aReinforcement Learning for Sequential Decision and Optimal Control$93089380 997 $aUNISA LEADER 04073oam 2200625 c 450 001 996309066803316 005 20240424230146.0 010 $a3-8394-4199-4 024 7 $a10.14361/9783839441992 035 $a(CKB)4100000005959134 035 $a(OAPEN)1001799 035 $a(DE-B1597)492849 035 $a(OCoLC)1046615216 035 $a(DE-B1597)9783839441992 035 $a(ScCtBLL)07176c9f-4af5-4138-a618-30a25c24c4bd 035 $a(transcript Verlag)9783839441992 035 $a(MiAaPQ)EBC6955980 035 $a(Au-PeEL)EBL6955980 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/32622 035 $a(EXLCZ)994100000005959134 100 $a20220221d2018 uy 0 101 0 $ager 135 $auuuuu---auuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMusikalische Praxis als Lebensform$eSinnfindung und Wirklichkeitserfahrung beim Musizieren$fEva-Maria Houben 205 $a1st ed. 210 $aBielefeld$ctranscript Verlag$d2018 215 $a1 online resource (246) 225 0 $aMusik und Klangkultur$v27 311 $a3-8376-4199-6 327 $aFrontmatter 1 Inhalt 5 Vorwort 9 1. Zuga?nge 15 2. Musikalische Praxis 37 3. Sprachfindungen 73 1. Tasten 111 2. Viele 139 3. Solo 163 4. Duo 179 5. Trio 191 6. Quartett 203 7. U?ber Grenzen hinaus 213 8. In der »Arche des Augenblicks« 223 Werkeverzeichnis 225 Literatur 231 330 $aWie wirklich ist musikalische Praxis und was hat sie mit dem allta?glichen Leben zu tun? Eva-Maria Houben zeigt, dass sich das Musizieren vera?ndert, sobald dessen Sinn nicht in der zweckorientierten Produktion von Arbeitsergebnissen, sondern im Musizieren als Bescha?ftigung und um des Spielens willen gefunden wird. Musikalische Praxis ist prinzipiell unabgeschlossen. So bleibt das Tun auf Wiederholung ausgerichtet und befreit von Perfektion, Produktivita?t, Zweckgebundenheit. Sinn wird in der jeweiligen Situation, am spezifischen Ort, im Beziehungsgeschehen selbst erlebt. Musikalische Praxis kann so zur »Lebensform« und dabei eine eigene Wirklichkeit werden. 330 1 $a»Houbens Diktion ist mehr behutsam tastend, fragend, erwa?gend als streng diskursiv. Das ist sympathisch und fordert Lesende zu der Bemu?hung auf, den Fragen perso?nlich nachzuspu?ren.« Ulrich Mahlert, das Orchester, 12 (2018) O-Ton: »Beim Musikmachen werden Kra?fte einer neuen Wirklichkeits- und Wirkungserfahrung freigesetzt« - Eva-Maria Houben im Gespra?ch bei WDR 3 Tonart am 01.06.2018. »Ein sehr lesenswertes Buch, das zum Nach-, Neu- und Querdenken anregt und das fu?r das soziale Miteinander mit und durch Musik mit jeder Denkfaser seiner Autorin einsteht.« Adalbert Grote, U?ben und Musizieren, 4 (2018) 410 0$aMusik und Klangkultur 606 $aMusik; Performativita?t; Wahrnehmung; Musikalische Praxis; Musikwissenschaft; Musikausfu?hrung; Ko?rperlichkeit; Metapher; Musikalische Analyse; Kultur; Kulturwissenschaft; Music; Music Performance; Performativity; Corporeality; Metaphor; Musical Analysis; Culture; Musicology; Cultural Studies; 610 $aCorporeality. 610 $aCultural Studies. 610 $aCulture. 610 $aMetaphor. 610 $aMusic Performance. 610 $aMusical Analysis. 610 $aMusicology. 610 $aPerformativity. 615 4$aMusik; Performativita?t; Wahrnehmung; Musikalische Praxis; Musikwissenschaft; Musikausfu?hrung; Ko?rperlichkeit; Metapher; Musikalische Analyse; Kultur; Kulturwissenschaft; Music; Music Performance; Performativity; Corporeality; Metaphor; Musical Analysis; Culture; Musicology; Cultural Studies; 676 $a780 700 $aHouben$b Eva-Maria$4aut$0967678 712 02$aOGeSoMo$4fnd$4http://id.loc.gov/vocabulary/relators/fnd 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a996309066803316 996 $aMusikalische Praxis als Lebensform$92197269 997 $aUNISA