LEADER 00937cam a2200229 i 4500 001 991002746459707536 008 150505s19830000it 000 0 ita 035 $ab14226091-39ule_inst 040 $aDip.to Studi Umanistici$bita 100 1 $aDa Pozzo, Giovanni Augusto $0480681 245 12$aL'ambigua armonia :$bstudio sull'Aminta del Tasso/$cGiovanni Augusto Da Pozzo 260 $aFirenze :$bL.S.Olschki,$c1983 300 $a330, [5] p. ;$c26 cm. 440 0$aBiblioteca dell'Archivum Romanicum.$nSerie I,$pStoria, letteratura, paleografia ;$v176 500 $a'Bibliografia': p.295-302 600 14$aTasso, Torquato$tAminta 907 $a.b14226091$b05-05-15$c05-05-15 912 $a991002746459707536 945 $aLE008 FL.M. VIII C 17$g1$i2008000010843$lle008$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i15671045$z05-05-15 996 $aAmbigua armonia$9256695 997 $aUNISALENTO 998 $ale008$b05-05-15$cm$da $e $fita$git $h2$i0 LEADER 01160nam a2200301 i 4500 001 991001669549707536 005 20020503124324.0 008 990615s1974 ||| ||| | ger 020 $a3476300234 035 $ab10255175-39ule_inst 035 $aLE01282487$9ExL 040 $aDip.to Lingue$bita 100 1 $aHolsken, Hans-Georg$0465366 245 10$aSprache, Literatur und Kommunikation :$bKursmodelle fur das Fach Deutsch in der Sekundarstufe II /$chrsg, von Hans-Georg Holsken, Wolfgang Werner, Sauer und Ralf, Schnell 260 $aStuttgart :$bMetzler,$cc1974 300 $a221 p. 22 cm. 490 0 $aZur Praxis des Deutschunterrichts ;$v2 500 $a2 v. Grundkurse 650 4$aFilologia tedesca$xStudio e insegnamento 700 1 $aWerner, Wolfgang 700 1 $aSchnell, Saurer 700 1 $aSchnell, Ralf 907 $a.b10255175$b13-01-20$c27-06-02 912 $a991001669549707536 945 $aLE012 430.7 HOL$g1$i2012000008946$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10305567$z27-06-02 996 $aSprache, Literatur und Kommunikation$91751295 997 $aUNISALENTO 998 $ale012$b01-01-99$cm$da $e-$feng$gxx $h0$i1 LEADER 05448nam 2200685 450 001 9910827761103321 005 20200520144314.0 010 $a0-12-802623-5 010 $a0-12-802419-4 035 $a(CKB)3710000000308038 035 $a(EBL)1888754 035 $a(SSID)ssj0001551535 035 $a(PQKBManifestationID)16169145 035 $a(PQKBTitleCode)TC0001551535 035 $a(PQKBWorkID)14812294 035 $a(PQKB)10170778 035 $a(Au-PeEL)EBL1888754 035 $a(CaPaEBR)ebr10996811 035 $a(CaONFJC)MIL785298 035 $a(OCoLC)898422493 035 $a(CaSebORM)9780128024195 035 $a(MiAaPQ)EBC1888754 035 $a(PPN)194315304 035 $a(EXLCZ)993710000000308038 100 $a20150106h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aView-based 3-D object retrieval /$fYue Gao, Qionghai Dai 205 $a1st edition 210 1$aAmsterdam, Netherlands :$cElsevier,$d2015. 210 4$dİ2015 215 $a1 online resource (154 p.) 225 0 $aComputer Science Reviews and Trends 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references. 327 $aFront Cover; View-Based 3-D Object Retrieval; Copyright; Contents; Acknowledgments; Preface; Part I: The Start; Chapter 1: Introduction; 1.1 The Definition of 3DOR; 1.2 Model-Based 3DOR Versus View-Based 3DOR; 1.3 The Challenges of V3DOR; 1.4 Summary of Our Work; 1.4.1 View Extraction; 1.4.2 Representative View Selection; 1.4.3 Learning the Weights for Multiple Views; 1.4.4 Distance Measures for Object Matching; 1.4.5 Learning the Relevance Among 3-D Objects; 1.5 Structure of This Book; 1.6 Summary; References; Chapter 2: The Benchmark and Evaluation; 2.1 Introduction 327 $a2.2 The Standard Benchmarks2.3 The Shape Retrieval Contest; 2.4 Evaluation Criteria in 3DOR; 2.5 Summary; References; Part II View Extraction, Selection, and Representation; Chapter 3: View Extraction; 3.1 Introduction; 3.2 Dense Sampling Viewpoints; 3.3 Predefined Camera Array; 3.4 Generated View; 3.5 Summary; References; Chapter 4: View Selection; 4.1 Introduction; 4.2 Unsupervised View Selection; 4.3 Interactive View Selection; 4.3.1 Multiview 3-D Object Matching; 4.3.2 View Clustering; 4.3.3 Initial Query View Selection; 4.3.4 Interactive View Selection with User Relevance Feedback 327 $a4.3.5 Learning a Distance Metric4.3.6 Multiple Query Views Linear Combination; 4.3.7 The Computational Cost; 4.4 Summary; References; Chapter 5: View Representation; 5.1 Introduction; 5.2 Shape Feature Extraction; 5.2.1 Zernike Moments; 5.2.2 Fourier Descriptor; 5.3 The Bag-of-Visual-Features Method; 5.3.1 The Bag-of-Visual-Words; 5.3.2 The Bag-of-Region-Words; 5.4 Learning the Weights for Multiple Views; 5.4.1 K-Partite Graph Reinforcement; 5.4.2 Weight Learning for Multiple Views Usingthe k-Partite Graph; 5.5 Summary; References; Part III View-Based 3-D Object Comparison 327 $aChapter 6: Multiple-View Distance Metric6.1 Introduction; 6.2 Fundamental Many-to-Many Distance Measures; 6.3 Bipartite Graph Matching; 6.3.1 View Selection and Weighting; 6.3.2 Bipartite Graph Construction; 6.3.3 Bipartite Graph Matching; 6.4 Statistical Matching; 6.4.1 Adaptive View Clustering; 6.4.2 CCFV; 6.4.2.1 View Clustering and Query Model Training; 6.4.2.2 Positive and Negative Matching Models; 6.4.2.3 Calculation of the Similarity Between Q and O S(Q,O); 6.4.2.4 Analysis of Computational Cost; 6.4.3 Markov Chain; 6.4.4 Gaussian Mixture Model Formulation 327 $a6.4.4.1 Conventional GMM Training6.4.4.2 Generative Adaptation of GMM; 6.4.4.3 Discriminative Adaptation of GMM; 6.4.4.4 Learning the Weights for Multiple GMMs; 6.5 Summary; References; Chapter 7: Learning-Based 3-D Object Retrieval; 7.1 Introduction; 7.2 Learning Optimal Distance Metrics; 7.2.1 Hausdorff Distance Learning; 7.2.2 Learning Bipartite Graph Optimal Matching; 7.3 3-D Object Relevance Estimation via Hypergraph Learning; 7.3.1 Hypergraph and Its Applications; 7.3.2 Learning on Single Hypergraph; 7.3.3 Learning on Multiple Hypergraphs 327 $a7.3.4 Learning the Weights for Multiple Hypergraphs 330 $a Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res 410 0$aComputer Science Reviews and Trends 606 $aImage processing$xData processing 606 $aPattern recognition systems$xQuality control 615 0$aImage processing$xData processing. 615 0$aPattern recognition systems$xQuality control. 676 $a006.37 700 $aGao$b Yue$0994999 702 $aDai$b Qionghai 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827761103321 996 $aView-based 3-D object retrieval$94014077 997 $aUNINA LEADER 01254nam 2200385 a 450 001 996248061503316 005 20221108105328.0 010 $a0-8147-4962-3 024 7 $a2027/heb30533 035 $a(CKB)2670000000416097 035 $a(dli)HEB30533 035 $a(MiU)MIU01000000000000012428008 035 $a(EXLCZ)992670000000416097 100 $a19880718d1975 uy 0 101 0 $aeng 135 $aurmnummmmuuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSeventeenth-century Barberini documents and inventories of art /$fMarilyn Aronberg Lavin 210 $aNew York $cNew York University Press$dc1975 215 $a1 online resource (xv, 741 p., [4] leaves of plates )$cports. ; 320 $aIncludes bibliographical references and index 410 0$aACLS Humanities E-Book. 606 $aArt$xHistory$vSources$vBibliography 615 0$aArt$xHistory 676 $a016.7 701 $aLavin$b Marilyn Aronberg$0484817 712 02$aAmerican Council of Learned Societies. 801 0$bNyNyACL 801 1$bNyNyACL 906 $aBOOK 912 $a996248061503316 996 $aSeventeenth-century Barberini documents and inventories of art$9293982 997 $aUNISA