LEADER 02345nam 2200565 a 450 001 996218065803316 005 20170816114255.0 010 $a1-282-24253-9 010 $a9786613813657 010 $a1-118-03320-5 010 $a1-118-03136-9 035 $a(CKB)2550000000057793 035 $a(EBL)695275 035 $a(OCoLC)768243486 035 $a(SSID)ssj0000566785 035 $a(PQKBManifestationID)11352784 035 $a(PQKBTitleCode)TC0000566785 035 $a(PQKBWorkID)10562865 035 $a(PQKB)11753669 035 $a(MiAaPQ)EBC695275 035 $a(PPN)196882516 035 $a(EXLCZ)992550000000057793 100 $a19941213d1995 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCombinatorial geometry$b[electronic resource] /$fJa?nos Pach, Pankaj K. Agarwal 210 $aNew York $cWiley$dc1995 215 $a1 online resource (374 p.) 225 1 $aWiley-Interscience series in discrete mathematics and optimization 300 $a"A Wiley-Interscience publication." 311 $a0-471-58890-3 320 $aIncludes bibliographical references and indexes. 327 $apt. 1. Arrangements of convex sets -- pt. 2. Arrangements of points and lines. 330 $aA complete, self-contained introduction to a powerful and resurging mathematical discipline . Combinatorial Geometry presents and explains with complete proofs some of the most important results and methods of this relatively young mathematical discipline, started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly half the results presented in this book were discovered over the past twenty years, and most have never before appeared in any monograph. Combinatorial Geometry will be of particular interest to mathematicians, computer scientists, physicists, and materials scientists interested i 410 0$aWiley-Interscience series in discrete mathematics and optimization. 606 $aCombinatorial geometry 615 0$aCombinatorial geometry. 676 $a516.13 700 $aPach$b Ja?nos$0421811 701 $aAgarwal$b Pankaj K$0601559 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996218065803316 996 $aCombinatorial geometry$91020382 997 $aUNISA