LEADER 01848nas 2200625 a 450 001 996217673903316 005 20240413020429.0 011 $a1873-166X 035 $a(CKB)954925621189 035 $a(CONSER)sn 95037181 035 $a(DE-599)ZDB2019384-1 035 $a(EXLCZ)99954925621189 100 $a19951102a19959999 uy 101 0 $aeng 135 $aurunu||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aReactive & functional polymers 210 $aAmsterdam ;$aNew York $cElsevier$dİ1995- 215 $a1 online resource 300 $aTitle from cover. 300 $aRefereed/Peer-reviewed 311 $aPrint version: Reactive & functional polymers. (DLC)sn 95037181 (OCoLC)33413410 1381-5148 517 3 $aReactive and functional polymers 531 $aREACT FUNCT 531 $aREACT FUNCT POLYM 531 $aREACTIVE AND FUNCTIONAL POLYMERS 531 $aREACT POLYM 531 $aREACT. FUNCT. POLYM 606 $aPolymers$vPeriodicals 606 $aChemical reactors$vPeriodicals 606 $aPolymerization$vPeriodicals 606 $aPolymeren$2gtt 606 $aFunctionele polymeren$2gtt 606 $aReactive polymers$2gtt 606 $aReaktive Polymere$2swd 606 $aZeitschrift$2swd 606 $aPolymere$2swd 606 $aFunktionelle Gruppe$2swd 615 0$aPolymers 615 0$aChemical reactors 615 0$aPolymerization 615 17$aPolymeren. 615 17$aFunctionele polymeren. 615 17$aReactive polymers. 615 07$aReaktive Polymere. 615 07$aZeitschrift. 615 07$aPolymere. 615 07$aFunktionelle Gruppe. 906 $aJOURNAL 912 $a996217673903316 920 $aexl_impl conversion 996 $aReactive & functional polymers$91892263 997 $aUNISA LEADER 05117nam 22004335 450 001 9910554254203321 005 20211129102213.0 010 $a83-66675-57-2 024 7 $a10.2478/9788366675575 035 $a(CKB)5590000000532508 035 $a(DE-B1597)590249 035 $a(OCoLC)1280944027 035 $a(DE-B1597)9788366675575 035 $a(MiAaPQ)EBC30427838 035 $a(Au-PeEL)EBL30427838 035 $a(EXLCZ)995590000000532508 100 $a20211129h20212021 fg 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplied Integral Equations /$fRamakanta Meher 205 $a1st ed. 210 1$aWarsaw ;$aBerlin : $cSciendo, $d[2021] 210 4$dİ2021 215 $a1 online resource (273 p.) 311 $a83-66675-56-4 327 $tFrontmatter -- $tPreface -- $tContents -- $tChapter-1 Introduction to integral equations -- $tChapter-2 Existence and Uniqueness Theorems of Integral equations -- $tChapter-3 Fredholm and Volterra Integral Equations -- $tChapter-4 Applications of Fredholm Theory -- $tChapter-5 Hilbert-Schmidt Theory -- $tChapter-6 The Fredholm Alternatives -- $tChapter-7 The method of undetermined coefficients -- $tAbout the Author 330 $a"There is a vital role of differential and integral equations in studying different types of real-world problems to study the behavior of the issues. Thus, it becomes essential to know the various methods of finding solutions of the integral equation in explicit form. For the integral equations whose solutions cannot be found in explicit form, one has to study the properties of solutions of the given differential equation to guess an approximate solution. This textbook entitled ?Applied Integral Equations? is intended to study the methods of finding the explicit solutions of integral equations where ever possible and in the absence of finding an exact solution. It is intended to study the properties of solutions of the given integral equations. This book contains 08 chapters. Chapter-1 discusses the introduction to integral equations, classification of integral equations, Relation between linear differential equations and Volterra integral equation, Nonlinear equation and solution of an integral equation. Chapter-2 discusses the existence and uniqueness theorems of Integral equations,Successive approximation, Iterated Functions, Reciprocal functions, Volterra Solution of Fredholm?s equation, Discontinuous Solution, Fredholm equations with separable kernels and Resolvent Kernel. Chapter-3 discusses the Fredholm equation as a limit of a finite system of linear equations, Hadamard?s Theorem, Fredholm?s two fundamental relations, Fredholm?s solution of the Integral equation for different , Characteristic numbers and basic functions, the associated Homogenous integral equations, the orthogonality theorem, Kernels of the form , Eigen Values and eigenfunctions, Fredholm integral equation of the second kind, Eigenvalues for non-separable kernels, Volterra Integral Equation, Solution by the Resolvent kernel and Method of successive approximation. Chapter-4 discusses the Applications of Fredholm theory, Free vibration of an elastic string, The differential equation of the problem, Reduction to a dimensional BVP, Solution of the boundary value problem, Construction of Green function, Equivalence between the Boundary value problem and Linear integral equations, Constrained vibrations of an elastic String, Equivalence between boundary value problem and Linear integral equations and Remark on the solution of the BVP. Chapter-5 discusses the Hilbert-Schmidt Theory that includes Iterations of symmetric kernels, Orthogonality theorem, An existence theorem for the nonlinear integral equation of Fredholm type and the equation of Bratu. Chapter-6 discusses the Fredholm alternatives, An example of Picard's method, Powers of an integral operator, Iterated kernels, Neumann series, A remark on the convergence of the iterative method, Differentiation of function under an integral sign, Relation between differential and integral equation, The Fredholm alternatives and the Fredholm alternative theorem. Chapter-7 discusses the method of undetermined coefficients that includes approximation methods of undetermined coefficients, the method of collocation, the method of weighting functions, the method of least squares and approximation of the kernel. This book is based on syllabi of the theory of integral equations prescribed for the undergraduate and postgraduate students of mathematics and PhD students in different institutions and universities of India and abroad. This book will be helpful for the competitive examinations as well. 606 $aMATHEMATICS / Applied$2bisacsh 615 7$aMATHEMATICS / Applied. 700 $aMeher$b Ramakanta, $4aut$4http://id.loc.gov/vocabulary/relators/aut$01217365 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910554254203321 996 $aApplied Integral Equations$92839479 997 $aUNINA