LEADER 03205nam 22005895 450 001 996217626803316 005 20200629204049.0 010 $a3-319-10088-2 024 7 $a10.1007/978-3-319-10088-3 035 $a(CKB)3710000000467706 035 $a(SSID)ssj0001558591 035 $a(PQKBManifestationID)16183648 035 $a(PQKBTitleCode)TC0001558591 035 $a(PQKBWorkID)14819576 035 $a(PQKB)10463572 035 $a(DE-He213)978-3-319-10088-3 035 $a(MiAaPQ)EBC5590709 035 $a(PPN)188409572 035 $a(EXLCZ)993710000000467706 100 $a20150819d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMixed Twistor D-modules$b[electronic resource] /$fby Takuro Mochizuki 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XX, 487 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2125 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-10087-4 327 $aIntroduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values. 330 $aWe introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.  . 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2125 606 $aFunctions of complex variables 606 $aAlgebraic geometry 606 $aSeveral Complex Variables and Analytic Spaces$3https://scigraph.springernature.com/ontologies/product-market-codes/M12198 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aFunctions of complex variables. 615 0$aAlgebraic geometry. 615 14$aSeveral Complex Variables and Analytic Spaces. 615 24$aAlgebraic Geometry. 676 $a515.353 700 $aMochizuki$b Takuro$4aut$4http://id.loc.gov/vocabulary/relators/aut$0319920 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996217626803316 996 $aMixed twistor D-modules$91387912 997 $aUNISA