LEADER 05394nam 2200685 a 450 001 996217139303316 005 20231110124210.0 010 $a1-280-84764-6 010 $a9786610847648 010 $a0-470-61240-1 010 $a0-470-39453-6 010 $a1-84704-571-5 035 $a(CKB)1000000000335560 035 $a(EBL)700732 035 $a(SSID)ssj0000275603 035 $a(PQKBManifestationID)11234736 035 $a(PQKBTitleCode)TC0000275603 035 $a(PQKBWorkID)10219674 035 $a(PQKB)11688796 035 $a(MiAaPQ)EBC700732 035 $a(MiAaPQ)EBC262013 035 $a(Au-PeEL)EBL262013 035 $a(PPN)156604035 035 $a(OCoLC)501313832 035 $a(EXLCZ)991000000000335560 100 $a20061120d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aX-ray diffraction by polycrystalline materials$b[electronic resource] /$fRene? Guinebretie?re 210 $aLondon ;$aNewport Beach, CA $cISTE$d2007 215 $a1 online resource (385 p.) 225 1 $aISTE ;$vv.97 300 $aDescription based upon print version of record. 311 $a1-905209-21-5 320 $aIncludes bibliographical references (p. [319]-347) and index. 327 $aX-ray Diffraction by Polycrystalline Materials; Table of Contents; Preface; Acknowledgements; An Historical Introduction: The Discovery of X-rays and the First Studies in X-ray Diffraction; Part 1. Basic Theoretical Elements, Instrumentation and Classical Interpretations of the Results; Chapter 1. Kinematic and Geometric Theories of X-ray Diffraction; 1.1. Scattering by an atom; 1.1.1. Scattering by a free electron; 1.1.1.1. Coherent scattering: the Thomson formula; 1.1.1.2. Incoherent scattering: Compton scattering [COM 23]; 1.1.2. Scattering by a bound electron 327 $a1.1.3. Scattering by a multi-electron atom1.2. Diffraction by an ideal crystal; 1.2.1. A few elements of crystallography; 1.2.1.1. Direct lattice; 1.2.1.2. Reciprocal lattice; 1.2.2. Kinematic theory of diffraction; 1.2.2.1. Diffracted amplitude: structure factor and form factor; 1.2.2.2. Diffracted intensity; 1.2.2.3. Laue conditions [FRI 12]; 1.2.3. Geometric theory of diffraction; 1.2.3.1. Laue conditions; 1.2.3.2. Bragg's law [BRA 13b, BRA 15]; 1.2.3.3. The Ewald sphere; 1.3. Diffraction by an ideally imperfect crystal; 1.4. Diffraction by a polycrystalline sample 327 $aChapter 2. Instrumentation used for X-ray Diffraction2.1. The different elements of a diffractometer; 2.1.1. X-ray sources; 2.1.1.1. Crookes tubes; 2.1.1.2. Coolidge tubes; 2.1.1.3. High intensity tubes; 2.1.1.4. Synchrotron radiation; 2.1.2. Filters and monochromator crystals; 2.1.2.1. Filters; 2.1.2.2. Monochromator crystals; 2.1.2.3. Multi-layered monochromators or mirrors; 2.1.3. Detectors; 2.1.3.1. Photographic film; 2.1.3.2. Gas detectors; 2.1.3.3. Solid detectors; 2.2. Diffractometers designed for the study of powdered or bulk polycrystalline samples 327 $a2.2.1. The Debye-Scherrer and Hull diffractometer2.2.1.1. The traditional Debye-Scherrer and Hull diffractometer; 2.2.1.2. The modern Debye-Scherrer and Hill diffractometer: use of position sensitive detectors; 2.2.2. Focusing diffractometers: Seeman and Bohlin diffractometers; 2.2.2.1. Principle; 2.2.2.2. The different configurations; 2.2.3. Bragg-Brentano diffractometers; 2.2.3.1. Principle; 2.2.3.2. Description of the diffractometer; path of the X-ray beams; 2.2.3.3. Depth and irradiated volume; 2.2.4. Parallel geometry diffractometers; 2.2.5. Diffractometers equipped with plane detectors 327 $a2.3. Diffractometers designed for the study of thin films2.3.1. Fundamental problem; 2.3.1.1. Introduction; 2.3.1.2. Penetration depth and diffracted intensity; 2.3.2. Conventional diffractometers designed for the study of polycrystalline films; 2.3.3. Systems designed for the study of textured layers; 2.3.4. High resolution diffractometers designed for the study of epitaxial films; 2.3.5. Sample holder; 2.4. An introduction to surface diffractometry; Chapter 3. Data Processing, Extracting Information; 3.1. Peak profile: instrumental aberrations; 3.1.1. X-ray source: g1(?); 3.1.2. Slit: g2(?) 327 $a3.1.3. Spectral width: g3(?) 330 $aThis book presents a physical approach to the diffraction phenomenon and its applications in materials science.An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural ana 410 0$aISTE 606 $aX-rays$xDiffraction 606 $aCrystallography 615 0$aX-rays$xDiffraction. 615 0$aCrystallography. 676 $a548.83 676 $a548/.83 700 $aGuinebretiere$b Rene?$0960291 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996217139303316 996 $aX-ray diffraction by polycrystalline materials$92176577 997 $aUNISA LEADER 02389nam0 2200565 i 450 001 VAN00124591 005 20240806100816.778 017 70$2N$a9783319718408 100 $a20191022d2018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aClasses of Directed Graphs$fJørgen Bang-Jensen, Gregory Gutin editors 210 $aCham$cSpringer$d2018 215 $axxii, 636 p.$cill.$d24 cm 410 1$1001VAN00030486$12001 $aSpringer monographs in mathematics$1210 $aBerlin [etc.]$cSpringer$d1989- 500 1$3VAN00236157$aClasses of Directed Graphs$91564674 606 $a05Cxx$xGraph theory [MSC 2020]$3VANC022400$2MF 606 $a68Wxx$xAlgorithms in computer science [MSC 2020]$3VANC021296$2MF 606 $a90C27$xCombinatorial optimization [MSC 2020]$3VANC031074$2MF 606 $a94A60$xCryptography [MSC 2020]$3VANC019699$2MF 606 $a94C15$xApplications of graph theory to circuits and networks [MSC 2020]$3VANC031126$2MF 610 $aAcyclic digraphs$9KW:K 610 $aAlgorithm analysis and problem complexity$9KW:K 610 $aDirected graphs$9KW:K 610 $aDirected graphs classes$9KW:K 610 $aDirected width parameters$9KW:K 610 $aDisjoint paths$9KW:K 610 $aEuler digraphs$9KW:K 610 $aFeedback sets$9KW:K 610 $aGraph branchings$9KW:K 610 $aGraph connectivity$9KW:K 610 $aGraph products$9KW:K 610 $aHamiltonian cycles$9KW:K 610 $aHamiltonian paths$9KW:K 610 $aOrientations of graphs$9KW:K 610 $aPlanar digraphs$9KW:K 610 $aTournaments generalizations$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aBang-Jensen$bJørgen$3VANV096020 702 1$aGutin$bGregory$3VANV096021 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-71840-8$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124591 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1061 $e08eMF1061 20191022 996 $aClasses of Directed Graphs$91564674 997 $aUNICAMPANIA