LEADER 03903nam 22007575 450 001 996213651403316 005 20200630210719.0 010 $a3-319-11445-X 024 7 $a10.1007/978-3-319-11445-3 035 $a(CKB)3710000000269657 035 $a(SSID)ssj0001372630 035 $a(PQKBManifestationID)11761806 035 $a(PQKBTitleCode)TC0001372630 035 $a(PQKBWorkID)11305621 035 $a(PQKB)11342794 035 $a(DE-He213)978-3-319-11445-3 035 $a(MiAaPQ)EBC5596471 035 $a(PPN)182097463 035 $a(EXLCZ)993710000000269657 100 $a20141013d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFormal Algorithmic Elimination for PDEs$b[electronic resource] /$fby Daniel Robertz 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (VIII, 283 p. 6 illus., 3 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2121 300 $aIncludes Index. 311 $a3-319-11444-1 327 $aIntroduction -- Formal Methods for PDE Systems -- Differential Elimination for Analytic Functions -- Basic Principles and Supplementary Material -- References -- List of Algorithms -- List of Examples -- Index of Notation -- Index. 330 $aInvestigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions coincides with a given parametrized set of analytic functions. After giving a detailed introduction to Janet bases and Thomas decomposition, the problem of finding an implicit description of certain sets of analytic functions in terms of differential equations is addressed. Effective methods of varying generality are developed to solve the differential elimination problems that arise in this context. In particular, it is demonstrated how the symbolic solution of partial differential equations profits from the study of the implicitization problem. For instance, certain families of exact solutions of the Navier-Stokes equations can be computed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2121 606 $aAlgebra 606 $aField theory (Physics) 606 $aCommutative algebra 606 $aCommutative rings 606 $aAssociative rings 606 $aRings (Algebra) 606 $aPartial differential equations 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aAlgebra. 615 0$aField theory (Physics). 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aPartial differential equations. 615 14$aField Theory and Polynomials. 615 24$aCommutative Rings and Algebras. 615 24$aAssociative Rings and Algebras. 615 24$aPartial Differential Equations. 676 $a512.94 700 $aRobertz$b Daniel$4aut$4http://id.loc.gov/vocabulary/relators/aut$0716368 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996213651403316 996 $aFormal algorithmic elimination for PDEs$91388028 997 $aUNISA