LEADER 01479nam0-22003611i-450- 001 990001781130403321 005 20121023103229.0 012 $auino ben- lin- tadi (3) 1817 (A)$2fei$5ITNA0274 035 $a000178113 035 $aFED01000178113 035 $a(Aleph)000178113FED01 035 $a000178113 100 $a20030910d1817----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 140 $ay---y----zz------lgyb-1000-- 141 $ag--a0bb-$5ITNA0274------------------------------------------------------------------- 200 1 $aRelazione della visita del Fucino fatta in luglio ed agosto del 1816 e parere definitivo intorno alla bonificazione di quella vallata dato nello stesso anno sopra i fatti raccolti in detta visita e nelle precedenti dal 1780 in qua$fGiuliano De Fazio 210 $aNapoli$cPresso Giovanni De Bonis$d1817 215 $a52 p.$d8° 610 0 $aBonifica 610 0 $aFucino 676 $a631.6 700 1$aDe Fazio,$bGiuliano$06090 719 00$aDe Bonis,$bGiovanni$4650 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aAQ 912 $a990001781130403321 952 $a60 094.3 B 67$b25016$fFAGBC 959 $aFAGBC 996 $aRelazione della visita del Fucino fatta in luglio ed agosto del 1816 e parere definitivo intorno alla bonificazione di quella vallata dato nello stesso anno sopra i fatti raccolti in detta visita e nelle precedenti dal 1780 in qua$9409226 997 $aUNINA LEADER 00833cam0-22002771i-450 001 9910594797903321 005 20221014133002.0 100 $a20030623d1947----km-y0itay50------ba 101 1 $aita$ceng 102 $aIT 105 $ay-------001yy 200 1 $a<>comportamento amministrativo$fHerbert A. Simon 210 $aBologna$cil Mulino$d1947 215 $aXVIII, 368 p.$d22 cm 225 1 $aCollezione di testi e di studi$iScienze sociali$v11 610 0 $aOrganizzazione$aAspetti psicosociologici 676 $a342$v23$zita 676 $a658.4$v23$zita 700 1$aSimon,$bHerbert Alexander$f<1916-2001>$066232 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a9910594797903321 952 $aXV N 307$b85307$fFGBC 959 $aFGBC 996 $aComportamento amministrativo$9394759 997 $aUNINA LEADER 07688nam 2200685 450 001 996212283503316 005 20221206162716.0 010 $a1-280-27793-9 010 $a9786610277933 010 $a0-471-74543-X 010 $a1-60119-376-9 010 $a0-471-74542-1 024 7 $a10.1002/047174543X 035 $a(CKB)1000000000355340 035 $a(EBL)233622 035 $a(SSID)ssj0000072005 035 $a(PQKBManifestationID)11110061 035 $a(PQKBTitleCode)TC0000072005 035 $a(PQKBWorkID)10090527 035 $a(PQKB)10590128 035 $a(MiAaPQ)EBC233622 035 $a(CaBNVSL)mat05237943 035 $a(IDAMS)0b00006481095e37 035 $a(IEEE)5237943 035 $a(OCoLC)173691873 035 $a(EXLCZ)991000000000355340 100 $a20151221d2005 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFourier analysis on finite groups with applications in signal processing and system design /$fRadomir S. Stankovia?c, Claudio Moraga, Jaakko Astola 210 1$aPiscataway, New Jersey :$cIEEE Press,$dc2005. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2005] 215 $a1 online resource (262 p.) 300 $aDescription based upon print version of record. 311 $a0-471-69463-0 320 $aIncludes bibliographical references and index. 327 $aPreface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2. 327 $a5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-HaarExpressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives. -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index. 330 $aDiscover applications of Fourier analysis on finite non-Abelian groups The majority of publications in spectral techniques consider Fourier transform on Abelian groups. However, non-Abelian groups provide notable advantages in efficient implementations of spectral methods. Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design examines aspects of Fourier analysis on finite non-Abelian groups and discusses different methods used to determine compact representations for discrete functions providing for their efficient realizations and related applications. Switching functions are included as an example of discrete functions in engineering practice. Additionally, consideration is given to the polynomial expressions and decision diagrams defined in terms of Fourier transform on finite non-Abelian groups. A solid foundation of this complex topic is provided by beginning with a review of signals and their mathematical models and Fourier analysis. Next, the book examines recent achievements and discoveries in: . Matrix interpretation of the fast Fourier transform. Optimization of decision diagrams. Functional expressions on quaternion groups. Gibbs derivatives on finite groups. Linear systems on finite non-Abelian groups. Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications of abstract harmonic analysis on finite non-Abelian groups in compact representations of discrete functions and related tasks in signal processing and system design, including logic design. All chapters are self-contained, each with a list of references to facilitate the development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this is an excellent textbook for graduate-level students and researchers in signal processing, logic design, and system theory-as well as the more general topics of computer science and applied mathematics. 606 $aSignal processing$xMathematics 606 $aFourier analysis 606 $aNon-Abelian groups 615 0$aSignal processing$xMathematics. 615 0$aFourier analysis. 615 0$aNon-Abelian groups. 676 $a621.3822 676 $a621.38220151 700 $aStankovia?c$b Radomir S.$0845320 701 $aMoraga$b Claudio$0845321 701 $aAstola$b Jaakko T$0845322 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a996212283503316 996 $aFourier analysis on finite groups with applications in signal processing and system design$91886526 997 $aUNISA