LEADER 05584nam 2200721 a 450 001 9910138863003321 005 20210617130214.0 010 $a1-118-60291-9 010 $a1-118-60285-4 010 $a1-118-60283-8 010 $a1-299-18780-3 035 $a(CKB)2550000001005910 035 $a(EBL)1124673 035 $a(OCoLC)828298911 035 $a(SSID)ssj0000831963 035 $a(PQKBManifestationID)11421096 035 $a(PQKBTitleCode)TC0000831963 035 $a(PQKBWorkID)10881247 035 $a(PQKB)10765859 035 $a(OCoLC)842860158 035 $a(MiAaPQ)EBC1124673 035 $a(Au-PeEL)EBL1124673 035 $a(CaPaEBR)ebr10660582 035 $a(CaONFJC)MIL450030 035 $a(PPN)181711699 035 $a(EXLCZ)992550000001005910 100 $a20110719d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNetwork performance analysis$b[electronic resource] /$fThomas Bonald, Mathieu Feuillet 210 $aLondon $cISTE ;$aHoboken, N.J. $cJohn Wiley$d2011 215 $a1 online resource (267 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-312-3 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. Motivation; 1.2. Networks; 1.3. Traffic; 1.4. Queues; 1.5. Structure of the book; 1.6. Bibliography; Chapter 2. Exponential Distribution; 2.1. Definition; 2.2. Discrete analog; 2.3. An amnesic distribution; 2.4. Minimum of exponential variables; 2.5. Sum of exponential variables; 2.6. Random sum of exponential variables; 2.7. A limiting distribution; 2.8. A ""very"" random variable; 2.9. Exercises; 2.10. Solution to the exercises; Chapter 3. Poisson Processes; 3.1. Definition; 3.2. Discrete analog 327 $a3.3. An amnesic process3.4. Distribution of the points of a Poisson process; 3.5. Superposition of Poisson processes; 3.6. Subdivision of a Poisson process; 3.7. A limiting process; 3.8. A ""very"" random process; 3.9. Exercises; 3.10. Solution to the exercises; Chapter 4. Markov Chains; 4.1. Definition; 4.2. Transition probabilities; 4.3. Periodicity; 4.4. Balance equations; 4.5. Stationary measure; 4.6. Stability and ergodicity; 4.7. Finite state space; 4.8. Recurrence and transience; 4.9. Frequency of transition; 4.10. Formula of conditional transitions; 4.11. Chain in reverse time 327 $a4.12. Reversibility4.13. Kolmogorov's criterion; 4.14. Truncation of a Markov chain; 4.15. Random walk; 4.16. Exercises; 4.17. Solution to the exercises; Chapter 5. Markov Processes; 5.1. Definition; 5.2. Transition rates; 5.3. Discrete analog; 5.4. Balance equations; 5.5. Stationary measure; 5.6. Stability and ergodicity; 5.7. Recurrence and transience; 5.8. Frequency of transition; 5.9. Virtual transitions; 5.10. Embedded chain; 5.11. Formula of conditional transitions; 5.12. Process in reverse time; 5.13. Reversibility; 5.14. Kolmogorov's criterion; 5.15. Truncation of a reversible process 327 $a5.16. Product of independent Markov processes5.17. Birth-death processes; 5.18. Exercises; 5.19. Solution to the exercises; Chapter 6. Queues; 6.1. Kendall's notation; 6.2. Traffic and load; 6.3. Service discipline; 6.4. Basic queues; 6.5. A general queue; 6.6. Little's formula; 6.7. PASTA property; 6.8. Insensitivity; 6.9. Pollaczek-Khinchin's formula; 6.10. The observer paradox; 6.11. Exercises; 6.12. Solution to the exercises; Chapter 7. Queuing Networks; 7.1. Jackson networks; 7.2. Traffic equations; 7.3. Stationary distribution; 7.4. MUSTA property; 7.5. Closed networks 327 $a7.6. Whittle networks7.7. Kelly networks; 7.8. Exercises; 7.9. Solution to the exercises; Chapter 8. Circuit Traffic; 8.1. Erlang's model; 8.2. Erlang's formula; 8.3. Engset's formula; 8.3.1. Model without blocking; 8.3.2. Model with blocking; 8.4. Erlang's waiting formula; 8.4.1. Waiting probability; 8.4.2. Mean waiting time; 8.5. The multiclass Erlang model; 8.6. Kaufman-Roberts formula; 8.7. Network models; 8.8. Decoupling approximation; 8.9. Exercises; 8.10. Solutions to the exercises; Chapter 9. Real-time Traffic; 9.1. Flows and packets; 9.2. Packet-level model; 9.3. Flow-level model 327 $a9.4. Congestion rate 330 $aThe book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i 410 0$aISTE 606 $aComputer networks$xEvaluation 606 $aNetwork performance (Telecommunication) 606 $aQueuing theory 615 0$aComputer networks$xEvaluation. 615 0$aNetwork performance (Telecommunication) 615 0$aQueuing theory. 676 $a621.382 700 $aBonald$b Thomas$0941050 701 $aFeuillet$b Mathieu$0941051 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910138863003321 996 $aNetwork performance analysis$92122208 997 $aUNINA LEADER 01298oam 2200433zu 450 001 996209182003316 005 20210807003707.0 010 $a1-4244-5916-8 035 $a(CKB)2400000000002496 035 $a(SSID)ssj0000452027 035 $a(PQKBManifestationID)12191881 035 $a(PQKBTitleCode)TC0000452027 035 $a(PQKBWorkID)10463421 035 $a(PQKB)11108676 035 $a(NjHacI)992400000000002496 035 $a(EXLCZ)992400000000002496 100 $a20160829d2010 uy 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$a2010 Sixth International Conference on Autonomic and Autonomous Systems 210 31$a[Place of publication not identified]$cIEEE$d2010 215 $a1 online resource 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-7695-3970-X 311 $a1-4244-5915-X 606 $aAutonomic computing$vCongresses 606 $aComputer systems$vCongresses 615 0$aAutonomic computing 615 0$aComputer systems 676 $a004 702 $aIEEE Staff 801 0$bPQKB 906 $aPROCEEDING 912 $a996209182003316 996 $a2010 Sixth International Conference on Autonomic and Autonomous Systems$92389782 997 $aUNISA