LEADER 02563nas 2200781- 450 001 996208516003316 005 20230217213020.0 011 $a1726-4189 035 $a(OCoLC)56326504 035 $a(CKB)111087929276006 035 $a(CONSER)--2020204301 035 $a(MiAaPQ)105740 035 $a(DE-599)ZDB2158181-2 035 $a(EXLCZ)99111087929276006 100 $a20040820a20049999 --- a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBiogeosciences 210 $a[Katlenberg-Lindau, Germany] $cCopernicus on behalf of the European Geosciences Union$dİ2004- 215 $a1 online resource 300 $aRefereed/Peer-reviewed 311 $a1726-4170 330 $a"Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere."--Home page 517 1 $aBG 531 0 $aBiogeosciences 606 $aBiogeochemistry$vPeriodicals 606 $aBiodiversity$vPeriodicals 606 $aBiotic communities$vPeriodicals 606 $aBiodiversity$2fast$3(OCoLC)fst01429860 606 $aBiogeochemistry$2fast$3(OCoLC)fst00832090 606 $aBiotic communities$2fast$3(OCoLC)fst00832828 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 610 00$abiogeochemie 610 00$abiogeochemistry 610 00$aecologie 610 00$aecology 610 00$aevolutie 610 00$aevolution 610 00$aaardwetenschappen 610 00$aearth sciences 610 00$aaardsysteemkunde 610 00$aearth system science 610 00$abiogeowetenschappen 610 00$abiogeosciences 610 10$aGeochemistry, Biogeochemistry 610 20$aEcology (General) 610 10$aGeochemie, biogeochemie 610 20$aEcologie (algemeen) 615 0$aBiogeochemistry 615 0$aBiodiversity 615 0$aBiotic communities 615 7$aBiodiversity. 615 7$aBiogeochemistry. 615 7$aBiotic communities. 676 $a[E] 686 $a38.32$2bcl 686 $a42.90$2bcl 686 $a43.12$2bcl 686 $a13$2ssgn 712 02$aEuropean Geosciences Union. 906 $aJOURNAL 912 $a996208516003316 996 $aBiogeosciences$92200671 997 $aUNISA LEADER 04322nam 22007095 450 001 9910728388903321 005 20230526144340.0 010 $a9783031296123$b(electronic bk.) 010 $z9783031296116 024 7 $a10.1007/978-3-031-29612-3 035 $a(MiAaPQ)EBC30552971 035 $a(Au-PeEL)EBL30552971 035 $a(OCoLC)1380788127 035 $a(DE-He213)978-3-031-29612-3 035 $a(BIP)089067330 035 $a(PPN)27061432X 035 $a(CKB)26784773600041 035 $a(EXLCZ)9926784773600041 100 $a20230526d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPair-Correlation Effects in Many-Body Systems $eTowards a Complete Theoretical Description of Pair-Correlations in the Static and Kinetic Description of Many-Body Systems /$fby Kristian Blom 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (189 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 311 08$aPrint version: Blom, Kristian Pair-Correlation Effects in Many-Body Systems Cham : Springer,c2023 9783031296116 327 $a1. Introduction -- 2. Bethe-Guggenheim approximation for uniform systems -- 3. Bethe-Guggenheim approximation for non-uniform systems -- 4. Delocalization-Induced Interface Broadening in Strongly Interacting Systems -- 5. Criticality in Cell Adhesion -- 6. Global Speed Limit for Finite-Time Dynamical Phase Transition in Nonequilibrium Relaxation -- 7. Conclusion and Outlook. 330 $aThe laws of nature encompass the small, the large, the few, and the many. In this book, we are concerned with classical (i.e., not quantum) many-body systems, which refers to any microscopic or macroscopic system that contains a large number of interacting entities. The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms a cornerstone in our theoretical understanding of collective effects in classical many-body systems and is to date a paradigm for statistical physics. Despite its elegant and simplistic description, exact analytical results in dimensions equal and larger than two are difficult to obtain. Therefore, much work has been done to construct methods that allow for approximate, yet accurate, analytical solutions. One of these methods is the Bethe-Guggenheim approximation, originally developed independently by Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-known mean field approximation and explicitly accounts for pair correlations between the spins in the Ising model. In this book, we embark on a journey to exploit the full capacity of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings. Throughout we unveil the non-trivial and a priori non-intuitive effects of pair correlations in the classical nearest-neighbor Ising model, which are taken into account in the Bethe-Guggenheim approximation and neglected in the mean field approximation. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 606 $aQuantum electrodynamics 606 $aPhysics 606 $aCondensed matter 606 $aMathematical physics 606 $aQuantum Electrodynamics, Relativistic and Many-body Calculations 606 $aClassical and Continuum Physics 606 $aStrongly Correlated Systems 606 $aMathematical Physics 610 $aMechanics 610 $aCondensed Matter 610 $aMathematical Physics 610 $aQuantum Theory 610 $aScience 615 0$aQuantum electrodynamics. 615 0$aPhysics. 615 0$aCondensed matter. 615 0$aMathematical physics. 615 14$aQuantum Electrodynamics, Relativistic and Many-body Calculations. 615 24$aClassical and Continuum Physics. 615 24$aStrongly Correlated Systems. 615 24$aMathematical Physics. 676 $a530.1433 700 $aBlom$b Kristian$01362856 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910728388903321 996 $aPair-Correlation Effects in Many-Body Systems$93382375 997 $aUNINA