LEADER 05437nam 2200661Ia 450 001 9910782213703321 005 20230828234132.0 010 $a1-281-90906-8 010 $a9786611909062 010 $a1-61583-869-4 010 $a981-270-723-9 035 $a(CKB)1000000000549874 035 $a(EBL)1214937 035 $a(SSID)ssj0000309223 035 $a(PQKBManifestationID)12106894 035 $a(PQKBTitleCode)TC0000309223 035 $a(PQKBWorkID)10266932 035 $a(PQKB)11327063 035 $a(MiAaPQ)EBC1214937 035 $a(WSP)00005879 035 $a(Au-PeEL)EBL1214937 035 $a(CaPaEBR)ebr10698796 035 $a(CaONFJC)MIL190906 035 $a(OCoLC)854973183 035 $a(EXLCZ)991000000000549874 100 $a20060320d2006 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSemiconductor optical amplifiers$b[electronic resource] /$fNiloy K Dutta & Qiang Wang 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific Pub.$dc2006 215 $a1 online resource (310 p.) 300 $aDescription based upon print version of record. 311 $a981-256-397-0 320 $aIncludes bibliographical references and index. 327 $aContents; Preface; Authors' Biographies; 1. Introduction; 1.1 Historical Developments; 1.2 Semiconductor Materials; 1.3 Operating Principles; 1.4 Applications; 1.5 Book Overview; 1.6 Future Challenges; 1.7 References; 2. Basic Concepts; 2.1 Introduction; 2.2 Optical Gain; 2.2.1 Gain spectrum and bandwidth; 2.2.2 Gain saturation; 2.3 Dielectric Waveguide; 2.4 Condition for Amplification; 2.5 P-N Junction; 2.6 Amplifier Characteristics; 2.7 Multiquantum Well Amplifiers; 2.8 References; 3. Recombination Mechanisms and Gain; 3.1 Introduction; 3.2 Radiative Recombination; 3.2.1 Condition for gain 327 $a3.2.2 Gain calculation 3.2.3 Spontaneous emission rate; 3.3 Nonradiative Recombination; 3.3.1 Auger effect; 3.3.2 Surface recombination; 3.3.3 Recombination at defects; 3.3.4 Carrier leakage over the heterobarrier; 3.4 Quantum Well Amplifiers; 3.4.1 Energy levels; 3.4.2 Optical gain and Auger recombination; 3.4.3 Strained quantum well amplifiers; 3.5 Gain in Quantum Wire (QWR) and Quantum Dot (QD) Structures; 3.6 References; 4. Epitaxial Growth and Amplifier Designs; 4.1 Introduction; 4.2 Material Systems; 4.3 Epitaxial Growth Methods; 4.3.1 Liquid phase epitaxy; 4.3.2 Vapor phase epitaxy 327 $a4.3.3 Metal-organic chemical vapor deposition4.3.4 Molecular beam epitaxy; 4.3.5 Chemical beam epitaxy; 4.4 Strained Layer Epitaxy; 4.5 Selective Area Growth; 4.5.1 Model of SAG; 4.5.2 Materials growth using SAG; 4.6 Amplifier Designs; 4.6.1 Leakage current; 4.7 Growth of QWR and QD Materials; 4.8 References; 5. Low Reflectivity Facet Designs; 5.1 Introduction; 5.2 Low Reflectivity Coatings; 5.3 Buried Facet Amplifiers; 5.4 Tilted Facet Amplifiers; 5.5 Amplified Spontaneous Emission and Optical Gain; 5.6 References; 6. Amplifier Rate Equations and Operating Characteristics; 6.1 Introduction 327 $a6.2 Amplifier Rate Equations for Pulse Propagation 6.3 Pulse Amplification; 6.4 Multichannel Amplification; 6.5 Amplifier Application in Optical Transmission Systems; 6.5.1 In-line amplifiers; 6.5.2 Optical pre-ampli.er; 6.5.3 Power amplifier; 6.6 Amplifier Noise; 6.6.1 Noise analysis for optical transmission; 6.7 Gain Dynamics; 6.7.1 Model of gain recovery; 6.7.2 Quantum dot SOA; 6.8 References; 7. Photonic Integrated Circuit Using Amplifiers; 7.1 Introduction; 7.2 Integrated Laser and Amplifier; 7.3 Multichannel WDM Sources with Amplifiers; 7.4 Spot Size Conversion (SSC) 327 $a7.5 Mach-Zehnder Interferometer 7.6 References; 8. Functional Properties and Applications; 8.1 Introduction; 8.2 Four-Wave Mixing; 8.2.1 CW FWM results; 8.2.1.1 FWM analysis; 8.2.2 Pulsed FWM results; 8.2.3 FWM bandwidth; 8.3 Cross Gain Modulation; 8.3.1 Rate equations for multiple pulse propagation; 8.3.2 Bandwidth of cross gain modulation; 8.4 Cross Phase Modulation; 8.4.1 Mach-Zehnder interferometer; 8.5 Wavelength Conversion; 8.6 Optical Demultiplexing; 8.6.1 Four-wave mixing based scheme; 8.6.2 Cross phase modulation based scheme; 8.7 OTDM System Applications; 8.7.1 Clock recovery 327 $a8.7.2 OTDM transmission 330 $aThis invaluable book provides a comprehensive treatment of the design and applications of the semiconductor optical amplifier (SOA). SOAs are important components for optical communication systems with applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's; since then, the diversity and scope of such applications have been steadily growing. Semiconductor Optical Amplifiers is self-contained and unified in presentation. The treatments in the book are detailed enough to capture 606 $aOptical amplifiers 606 $aOptical communications 615 0$aOptical amplifiers. 615 0$aOptical communications. 676 $a621.3827 700 $aDutta$b N. K$g(Niloy K.),$f1953-$01480114 701 $aWang$b Qiang$f1973 September 2-$01544612 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782213703321 996 $aSemiconductor optical amplifiers$93799001 997 $aUNINA LEADER 01405nas 22004453a 450 001 996207934703316 005 20240621125024.0 035 $a(OCoLC)70220367 035 $a(CKB)954926950787 035 $a(CONSER)--2009247692 035 $a(DE-599)ZDB2640894-6 035 $a(EXLCZ)99954926950787 100 $a20060630a19649999 s-- - 101 0 $aeng 135 $aurun||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOsaka journal of mathematics 210 $a[Toyonaka] $cDept. of Mathematics, Osaka University 300 $aVols. for 1964- published jointly by the Departments of Mathematics, Osaka University and Osaka City University; by Kinokuniya Co. Ltd. 300 $aRefereed/Peer-reviewed 311 $a0030-6126 606 $aMathematics$vPeriodicals 606 $aMathematics$2fast$3(OCoLC)fst01012163 606 $aWiskunde$2gtt 606 $aMatemàtica$2thub 608 $aPeriodicals.$2fast 608 $aRevistes electròniques.$2thub 615 0$aMathematics 615 7$aMathematics. 615 17$aWiskunde. 615 7$aMatemàtica. 676 $a510/.05 712 02$aO?saka Daigaku.$bSu?gakuka. 712 02$aO?saka Shiritsu Daigaku.$bSu?gakuka. 906 $aJOURNAL 912 $a996207934703316 996 $aOsaka journal of mathematics$9790080 997 $aUNISA