LEADER 01697nas 22005173 450 001 996203803003316 005 20240425163442.0 011 $a2326-3245 024 8 $aeb50815575 035 $a(OCoLC)60628815 035 $a(CKB)958480157144 035 $a(CONSER)--2013201701 035 $a(EXLCZ)99958480157144 100 $a20050614b19891995 s-- a 101 0 $aeng 135 $aurun||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $anc$2rdacarrier 200 00$aORSA journal on computing 210 1$aBaltimore, MD :$cOperations Research Society of America,$d1989-199- 210 1$aLinthicum, MD :$cINFORMS 300 $aRefereed/Peer-reviewed 300 $a"Issues for this title are included on website of later title: INFORMS journal of computing." 311 $a0899-1499 517 3 $aOperations Research Society of America journal on computing 517 1 $aJournal on computing 517 3 $aJOC: ORSA journal on computing 531 0 $aORSA j, comput. 606 $aOperations research$xData processing$vPeriodicals 606 $aOperations research$xData processing$2fast$3(OCoLC)fst01046391 606 $aOperations research$2gtt 606 $aComputers$2gtt 608 $aPeriodicals.$2fast 610 $aOperations Research 615 0$aOperations research$xData processing 615 7$aOperations research$xData processing. 615 17$aOperations research. 615 17$aComputers. 676 $a005 686 $a004$a795$2zdbs 712 02$aOperations Research Society of America. 906 $aJOURNAL 912 $a996203803003316 996 $aORSA journal on computing$92560176 997 $aUNISA LEADER 04203nam 22007575 450 001 9910299982403321 005 20200630232723.0 010 $a3-319-08198-5 024 7 $a10.1007/978-3-319-08198-4 035 $a(CKB)3710000000261951 035 $a(EBL)1965354 035 $a(OCoLC)896832292 035 $a(SSID)ssj0001372809 035 $a(PQKBManifestationID)11866426 035 $a(PQKBTitleCode)TC0001372809 035 $a(PQKBWorkID)11305158 035 $a(PQKB)11142976 035 $a(MiAaPQ)EBC1965354 035 $a(DE-He213)978-3-319-08198-4 035 $a(PPN)182093018 035 $a(EXLCZ)993710000000261951 100 $a20141010d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSymbol Correspondences for Spin Systems /$fby Pedro de M. Rios, Eldar Straume 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (204 p.) 300 $aDescription based upon print version of record. 311 $a3-319-08197-7 320 $aIncludes bibliographical references and index. 327 $aPreface -- 1 Introduction -- 2 Preliminaries -- 3 Quantum Spin Systems and Their Operator Algebras -- 4 The Poisson Algebra of the Classical Spin System -- 5 Intermission -- 6 Symbol Correspondences for a Spin-j System -- 7 Multiplications of Symbols on the 2-Sphere -- 8 Beginning Asymptotic Analysis of Twisted Products -- 9 Conclusion -- Appendix -- Bibliography -- Index. 330 $aIn mathematical physics, the correspondence between quantum and classical mechanics is a central topic, which this book explores in more detail in the particular context of spin systems, that is, SU(2)-symmetric mechanical systems. A detailed presentation of quantum spin-j systems, with emphasis on the SO(3)-invariant decomposition of their operator algebras, is first followed by an introduction to the Poisson algebra of the classical spin system, and then by a similarly detailed examination of its SO(3)-invariant decomposition. The book next proceeds with a detailed and systematic study of general quantum-classical symbol correspondences for spin-j systems and their induced twisted products of functions on the 2-sphere. This original systematic presentation culminates with the study of twisted products in the asymptotic limit of high spin numbers. In the context of spin systems it shows how classical mechanics may or may not emerge as an asymptotic limit of quantum mechanics. The book will be a valuable guide for researchers in this field, and its self-contained approach also makes it a helpful resource for graduate students in mathematics and physics. 606 $aNonassociative rings 606 $aRings (Algebra) 606 $aQuantum theory 606 $aTopological groups 606 $aLie groups 606 $aGeometry, Differential 606 $aNon-associative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11116 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 615 0$aNonassociative rings. 615 0$aRings (Algebra) 615 0$aQuantum theory. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aGeometry, Differential. 615 14$aNon-associative Rings and Algebras. 615 24$aQuantum Physics. 615 24$aTopological Groups, Lie Groups. 615 24$aDifferential Geometry. 676 $a510 676 $a512.48 676 $a512.55 676 $a512482 700 $aRios$b Pedro de M$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721279 702 $aStraume$b Eldar$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299982403321 996 $aSymbol Correspondences for Spin Systems$92529253 997 $aUNINA