LEADER 05714nam 2200721 450 001 996203494803316 005 20200520144314.0 010 $a1-118-92593-9 010 $a1-118-92590-4 010 $a1-118-92591-2 035 $a(CKB)2670000000569500 035 $a(EBL)1791965 035 $a(OCoLC)891448019 035 $a(SSID)ssj0001348485 035 $a(PQKBManifestationID)11888036 035 $a(PQKBTitleCode)TC0001348485 035 $a(PQKBWorkID)11396395 035 $a(PQKB)10352968 035 $a(MiAaPQ)EBC1791965 035 $a(DLC) 2014030067 035 $a(Au-PeEL)EBL1791965 035 $a(CaPaEBR)ebr10943656 035 $a(CaONFJC)MIL647928 035 $a(EXLCZ)992670000000569500 100 $a20141010h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr 200 10$aWave propagation in drilling, well logging, and reservoir applications /$fWilson C. Chin ; Kris Hackerott, cover design 210 1$aHoboken, New Jersey :$cScrivener Publishing,$d2014. 210 4$dİ2014 215 $a1 online resource (458 p.) 225 0 $aAdvances in Petroleum Engineering 300 $aDescription based upon print version of record. 311 $a1-118-92589-0 311 $a1-322-16671-4 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright Page; Contents; Preface; Acknowledgements; 1 Overview and Fundamental Ideas; 1.1 The Classical Wave Equation; 1.1.1 Fundamental properties; 1.1.2 Reflection properties; 1.1.2.1 Example 1-1. Rigid end termination; 1.1.2.2 Example 1-2. Stress-free end; 1.1.2.3 Note on acoustics; 1.2 Fundamental Representation; 1.2.1 Taylor series; 1.2.2 Fourier series; 1.3 Separation of Variables and Eigenfunction Expansions; 1.3.1 Example 1-3. String with pinned ends and general initial conditions; 1.3.2 Example 1-4. String with distributed forces 327 $a1.3.3 Example 1-5. Alternative boundary conditions1.3.4 Example 1-6. Mixed boundary conditions; 1.3.5 Example 1-7. Problems without initial conditions; 1.3.5.1 Example 1-7a. Naive approach; 1.3.5.2 Example 1-7b. Correct approach; 1.3.5.3 Example 1-7c. Faster approach; 1.3.6 Example 1-8. Dissipative wave solution; 1.4 Standing Versus Propagating Waves; 1.4.1 Standing waves; 1.4.2 Propagating waves; 1.4.3 Combined standing and propagating waves; 1.4.4 Characterizing propagating waves; 1.5 Laplace Transforms; 1.5.1 Wave equation derivation; 1.5.2 Example 1-9. String falling under its own weight 327 $a1.5.3 Example 1-10. Semi-infinite string with a general end support1.5.3.1 Example 1-10a. Rectangular pulse; 1.5.3.2 Example 1-10b. Impulse response; 1.5.3.3 Example 1-10c. Incident sinusoidal wavetrain; 1.6 Fourier Transforms; 1.6.1 Example 1-11. Propagation of an initially static disturbance; 1.6.2 Example 1-12. Directional properties, special wave; 1.7 External Forces Versus Boundary Conditions; 1.7.1 Single point force; 1.7.2 Properties of point loads; 1.7.2.1 Example 1-13. Boundary conditions versus forces; 1.7.2.2 Couples or dipoles; 1.7.2.3 Multiple forces and higher order moments 327 $a1.7.2.4 Symmetries and anti-symmetries1.7.2.5 Impulse response; 1.7.2.6 On the subtle meaning of impulse; 1.7.2.7 Example 1-14. Incorrect use of impulse response; 1.7.2.8 Additional models; 1.7.2.9 Other delta function properties; 1.8 Point Force and Dipole Wave Excitation; 1.8.1 Example 1-15. Finite string excited by a time-varying concentrated point force; 1.8.2 Example 1-16. Finite string excited by a time-varying point dipole (i.e., a force couple); 1.8.3 Example 1-17. Splitting of an applied initial disturbance; 1.9 First-Order Partial Differential Equations; 1.10 References 327 $a2 Kinematic Wave Theory2.1 Whitham's Theory in Nondissipative Media; 2.1.1 Uniform media; 2.1.2 Example 2-1. Transverse beam vibrations; 2.1.3 Example 2-2. Simple longitudinal oscillations; 2.1.4 Example 2-3. Asymptotic stationary phase expansion; 2.1.5 Simple consequences of KWT; 2.1.6 Nonuniform media; 2.1.7 Example 2-4. Numerical integration; 2.1.8 Ease of use is important to practical engineering; 2.2 Simple Attenuation Modeling; 2.2.1 The Q-model; 2.2.2 Relating Q to amplitude in space; 2.2.3 Relating Q to standing wave decay; 2.2.4 Kinematic wave generalization 327 $a2.3 KWT in Homogeneous Dissipative Media 330 $aWave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before pu 410 0$aAdvances in Petroleum Engineering 606 $aGeophysical well logging 606 $aSeismic reflection method 606 $aWave-motion, Theory of 615 0$aGeophysical well logging. 615 0$aSeismic reflection method. 615 0$aWave-motion, Theory of. 676 $a622/.1828 700 $aChin$b Wilson C.$0860858 702 $aHackerott$b Kris 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996203494803316 996 $aWave propagation in drilling, well logging, and reservoir applications$91921027 997 $aUNISA