LEADER 05106nam 2200613z 450 001 996203199603316 005 20230907180851.0 010 $a1-281-84307-5 010 $a9786611843076 010 $a3-527-61737-X 010 $a3-527-61738-8 035 $a(CKB)1000000000377449 035 $a(EBL)482073 035 $a(OCoLC)289077437 035 $a(SSID)ssj0000231291 035 $a(PQKBManifestationID)11173881 035 $a(PQKBTitleCode)TC0000231291 035 $a(PQKBWorkID)10205047 035 $a(PQKB)11628157 035 $a(MiAaPQ)EBC482073 035 $a(JP-MeL)3000110987 035 $a(EXLCZ)991000000000377449 100 $a20160819h20042004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum field theory $efrom operators to path integrals /$fKerson Huang 210 $aWeinheim$cWiley-VCH$dc2004 215 $a1 online resource (448 p.) 311 $a0-471-14120-8 320 $aIncludes bibliographical references and index. 327 $aQUANTUM FIELD THEORY; Contents; Preface; Acknowledgment; 1. Introducing Quantum Fields; 1.1. The Classical String; 1.2. The Quantum String; 1.3. Second Quantization; 1.4. Creation and Annihilation Operators; 1.5. Bose and Fermi Statistics; Problems; References; 2. Scalar Fields; 2.1. Klein-Gordon Equation; 2.2. Real Scalar Field; 2.3. Energy and Momentum; 2.4. Particle Spectrum; 2.5. Continuum Normalization; 2.6. Complex Scalar Field; 2.7. Charge and Antiparticle; 2.8. Microcausality; 2.9. The Feynman Propagator; 2.10. The Wave Functional; 2.11. Functional Operations 327 $a2.12. Vacuum Wave Functional2.13. The ?4 Theory; Problems; 3. Relativistic Fields; 3.1. Lorentz Transformations; 3.2. Minimal Representation: SL(2C); 3.3. The Poincare? Group; 3.4. Scalar, Vector, and Spinor Fields; 3.5. Relativistic Quantum Fields; 3.6. One-Particle States; Problems; Reference; 4. Canonical Formalism; 4.1. Principle of Stationary Action; 4.2. Noether's Theorem; 4.3. Translational Invariance; 4.4. Lorentz Invariance; 4.5. Symmetrized Energy-Momentum Tensor; 4.6. Gauge Invariance; Problems; Reference; 5. Electromagnetic Field; 5.1. Maxwell's Equations 327 $a5.2. Covariance of the Classical Theory5.3. Canonical Formalism; 5.4. Quantization in Coulomb Gauge; 5.5. Spin Angular Momentum; 5.6. Intrinsic Parity; 5.7. Transverse Propagator; 5.8. Vacuum Fluctuations; 5.9. The Casimir Effect; 5.10. The Gauge Principle; Problems; References; 6. Dirac Equation; 6.1. Dirac Algebra; 6.2. Wave Functions and Current Density; 6.3. Plane Waves; 6.4. Lorentz Transformations; 6.5. Interpretation of Dirac Matrices; 6.6. External Electromagnetic Field; 6.7. Nonrelativistic Limit; 6.8. Thomas Precession; 6.9. Hole Theory; 6.10. Charge Conjugation 327 $a6.11 Massless ParticlesProblems; References; 7. The Dirac Field; 7.1. Quantization of the Dirac Field; 7.2. Feynman Propagator; 7.3. Normal Ordering; 7.4. Electromagnetic Interactions; 7.5. Isospin; 7.6. Parity; 7.7. Charge Conjugation; 7.8. Time Reversal; Problems; Reference; 8. Dynamics of Interacting Fields; 8.1. Time Evolution; 8.2. Interaction Picture; 8.3. Adiabatic Switching; 8.4. Correlation Functions in the Interaction Picture; 8.5. S Matrix and Scattering; 8.6. Scattering Cross Section; 8.7. Potential Scattering; 8.8. Adiabatic Theorem; Problems; References.; 9. Feynman Graphs 327 $a9.1. Perturbation Theory9.2. Time-Ordered and Normal Products; 9.3. Wick'sTheorem; 9.4. Feynman Rules for Scalar Theory; 9.5. Types of Feynman Graphs; 9.5.1. Vacuum Graph; 9.5.2. Self-Energy Graph; 9.5.3. Connected Graph; 9.6. Wick Rotation; 9.7. Regularization Schemes; 9.8. Linked-Cluster Theorem; 9.9. Vacuum Graphs; Problems; Reference.; 10. Vacuum Correlation Functions; 10.1. Feynman Rules; 10.2. Reduction Formula; 10.3. The Generating Functional; 10.4. Connected Correlation Functions; 10.5. Lehmann Representation; 10.6. Dyson-Schwinger Equations; 10.7. Bound States 327 $a10.8. Bethe-Salpeter Equation 330 $aA unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalizatio 606 $6880-04/$1$aQuantum field theory 615 0$aQuantum field theory. 676 $a530.143 676 $a539.72 686 $a421.3$2njb/09 686 $a530.14/3$2njb/09 700 $aHuang$b Kerson$f1928-$047830 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996203199603316 996 $aQuantum field theory$9879340 997 $aUNISA