LEADER 05144nam 2200661 450 001 996202368903316 005 20170815114341.0 010 $a1-280-44809-1 010 $a9786610448098 010 $a0-470-36131-X 010 $a0-471-78525-3 010 $a1-61583-844-9 010 $a0-471-78524-5 035 $a(CKB)1000000000354666 035 $a(EBL)257216 035 $a(OCoLC)71432002 035 $a(SSID)ssj0000140092 035 $a(PQKBManifestationID)11146875 035 $a(PQKBTitleCode)TC0000140092 035 $a(PQKBWorkID)10030048 035 $a(PQKB)10790636 035 $a(MiAaPQ)EBC257216 035 $a(PPN)204365260 035 $a(EXLCZ)991000000000354666 100 $a20160815h20062006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDistillation design and control using Aspen simulation /$fWilliam L. Luyben 210 1$aHoboken, New Jersey :$cWiley-Interscience,$d2006. 210 4$dİ2006 215 $a1 online resource (361 p.) 300 $a"AIChE." 300 $aIncludes index. 311 $a0-471-77888-5 327 $aDISTILLATION DESIGN AND CONTROL USING ASPENTM SIMULATION; CONTENTS; PREFACE; 1 FUNDAMENTALS OF VAPOR-LIQUID PHASE EQUILIBRIUM (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubblepoint Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Conclusion; 2 ANALYSIS OF DISTILLATION COLUMNS; 2.1 Design Degrees of Freedom; 2.2 Binary McCabe-Thiele Method; 2.3 Approximate Multicomponent Methods; 2.4 Analysis of Ternary Systems Using DISTIL; 2.5 Conclusion 327 $a3 SETTING UP A STEADY-STATE SIMULATION3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Equipment Parameters; 3.5 Running the Simulation; 3.6 Using "Design Spec/Vary" Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conclusion; 4 DISTILLATION ECONOMIC OPTIMIZATION; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Conclusion; 5 MORE COMPLEX DISTILLATION SYSTEMS; 5.1 Methyl Acetate/Methanol/Water System 327 $a5.2 Ethanol Dehydration5.3 Heat-Integrated Columns; 5.4 Conclusion; 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION; 6.1 Summary of Methods; 6.2 Binary Propane/Isobutane System; 6.3 Ternary BTX System; 6.4 Multicomponent Hydrocarbon System; 6.5 Ternary Azeotropic System; 6.6 Conclusion; 7 CONVERTING FROM STEADY STATE TO DYNAMIC SIMULATION; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics; 7.4 Installing Basic Controllers; 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation 327 $a7.7 Comparison with Economic Optimum Design7.8 Conclusion; 8 CONTROL OF MORE COMPLEX COLUMNS; 8.1 Methyl Acetate Column; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Conclusion; 9 REACTIVE DISTILLATION; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 TAME Process Basics; 9.4 TAME Reaction Kinetics and VLE; 9.5 Plantwide Control Structure; 9.6 Conclusion; 10 CONTROL OF SIDESTREAM COLUMNS; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column 327 $a10.3 Liquid Sidestream Column with Stripper10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusion; 11 CONTROL OF PETROLEUM FRACTIONATORS; 11.1 Petroleum Fractions; 11.2 Characterization of Crude Oil; 11.3 Steady-State Design of PREFLASH Column; 11.4 Control of PREFLASH Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusion; INDEX 330 $aA timely treatment of distillationcombining steady-state designand dynamic controllabilityAs the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle.Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of 606 $aDistillation apparatus$xDesign and construction 606 $aChemical process control$xSimulation methods 615 0$aDistillation apparatus$xDesign and construction. 615 0$aChemical process control$xSimulation methods. 676 $a660.2842 676 $a660/.28425 700 $aLuyben$b William L.$016520 712 02$aAmerican Institute of Chemical Engineers. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996202368903316 996 $aDistillation Design and Control Using Aspen SImulation$9716264 997 $aUNISA