LEADER 01052nam--2200361---450- 001 990006188460203316 005 20170116115212.0 010 $a0-521-62153-4 035 $a000618846 035 $aUSA01000618846 035 $a(ALEPH)000618846USA01 035 $a000618846 100 $a20170116d1999----km-y0itay50------ba 101 $aeng 102 $aGB 105 $a||||||||001yy 200 1 $aVision and meaning in ninth-century Byzantium$eimage as exegesis in the Homilies of Gregory of Nazianzus$fLeslie Brubaker 210 $aCambridge$cCambridge University$d1999 215 $aXXIII,489 p.$cill.$d26 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 606 0 $aManoscritti$yBisanzio$2BNCF 676 $a745 700 1$aBRUBAKER,$bLeslie$0459360 801 0$aIT$bsalbc$gISBD 912 $a990006188460203316 951 $aBYZ 63$b9790 DSA 959 $aBK 969 $aDSA 979 $aDSA$b90$c20170116$lUSA01$h1152 996 $aVision and meaning in ninth-century Byzantium$9245441 997 $aUNISA LEADER 03498nam 2200685 450 001 9910464790703321 005 20210422203031.0 010 $a3-11-038257-1 010 $a3-11-034203-0 024 7 $a10.1515/9783110342031 035 $a(CKB)3520000000004117 035 $a(EBL)1663235 035 $a(SSID)ssj0001432759 035 $a(PQKBManifestationID)11886066 035 $a(PQKBTitleCode)TC0001432759 035 $a(PQKBWorkID)11405805 035 $a(PQKB)10610467 035 $a(MiAaPQ)EBC1663235 035 $a(DE-B1597)245801 035 $a(OCoLC)894739867 035 $a(OCoLC)979955115 035 $a(DE-B1597)9783110342031 035 $a(Au-PeEL)EBL1663235 035 $a(CaPaEBR)ebr11010164 035 $a(CaONFJC)MIL806993 035 $a(EXLCZ)993520000000004117 100 $a20150211h20142014 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 04$aThe elementary theory of groups $ea guide through the proofs of the Tarski conjectures /$fBenjamin Fine [and five others] 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2014. 210 4$dİ2014 215 $a1 online resource (322 p.) 225 1 $aDe Gruyter Expositions in Mathematics,$x0938-6572 ;$vVolume 60 300 $aDescription based upon print version of record. 311 $a3-11-034199-9 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tPreface --$tContents --$t1 Group theory and logic: introduction --$t2 Combinatorial group theory --$t3 Geometric group theory --$t4 First order languages and model theory --$t5 The Tarski problems --$t6 Fully residually free groups I --$t7 Fully residually free groups II --$t8 Algebraic geometry over groups --$t9 The solution of the Tarski problems --$t10 On elementary free groups and extensions --$t11 Discriminating and square like groups --$tReferences --$tIndex 330 $aAfter being an open question for sixty years the Tarski conjecture was answered in the affirmative by Olga Kharlampovich and Alexei Myasnikov and independently by Zlil Sela. Both proofs involve long and complicated applications of algebraic geometry over free groups as well as an extension of methods to solve equations in free groups originally developed by Razborov. This book is an examination of the material on the general elementary theory of groups that is necessary to begin to understand the proofs. This material includes a complete exposition of the theory of fully residually free groups or limit groups as well a complete description of the algebraic geometry of free groups. Also included are introductory material on combinatorial and geometric group theory and first-order logic. There is then a short outline of the proof of the Tarski conjectures in the manner of Kharlampovich and Myasnikov. 410 0$aDe Gruyter expositions in mathematics ;$vVolume 60. 606 $aGeometry, Algebraic 606 $aCombinatorial analysis 606 $aProof theory 608 $aElectronic books. 615 0$aGeometry, Algebraic. 615 0$aCombinatorial analysis. 615 0$aProof theory. 676 $a512/.2 700 $aFine$b Benjamin, $056763 702 $aFine$b Benjamin$f1948- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464790703321 996 $aThe elementary theory of groups$92461128 997 $aUNINA