LEADER 01301nam--2200421---450- 001 990005872680203316 005 20130717100312.0 010 $a978-88-17-06698-3 035 $a000587268 035 $aUSA01000587268 035 $a(ALEPH)000587268USA01 035 $a000587268 100 $a20130717d2013----km-y0itay50------ba 101 $aita$ager 102 $aIT 105 $a||||||||001yy 200 1 $aFaust$fJohn Wolfgang Goethe$gcon un saggio introduttivo di Thomas Mann$gtraduzione e note di Guido Manacorda$gnota al testo di Giulio Schiavoni 210 $aMilano$cBUR Rizzoli$d2013 215 $aCXXXI, 1062 p.$d20 cm 225 2 $aBUR Rizzoli 300 $aTesto tedesco a fronte 410 0$12001$aBUR Rizzoli$iClassici 500 11$aFaust$m(in italiano)$921688 500 11$aFaust$921688 676 $a832.6 700 1$aGOETHE,$bJohann Wolfgang : von$0151776 702 1$aMANN,$bThomas$f<1875-1955> 702 1$aMANACORDA,$bGuido 702 1$aSCHIAVONI,$bGiulio 801 0$aIT$bsalbc$gISBD 912 $a990005872680203316 951 $aVII.2.A. 1192$b8907 L.G.$cVII.2.A.$d00342235 959 $aBK 969 $aUMA 979 $aIANNONE$b90$c20130717$lUSA01$h0935 979 $aIANNONE$b90$c20130717$lUSA01$h1003 996 $aFaust$921688 997 $aUNISA LEADER 03426nam 22007215 450 001 9910299991403321 005 20251113174059.0 010 $a3-319-05792-8 024 7 $a10.1007/978-3-319-05792-7 035 $a(CKB)3710000000143805 035 $a(EBL)1782870 035 $a(SSID)ssj0001277360 035 $a(PQKBManifestationID)11839221 035 $a(PQKBTitleCode)TC0001277360 035 $a(PQKBWorkID)11256931 035 $a(PQKB)11286641 035 $a(DE-He213)978-3-319-05792-7 035 $a(MiAaPQ)EBC6311517 035 $a(MiAaPQ)EBC1782870 035 $a(Au-PeEL)EBL1782870 035 $a(CaPaEBR)ebr10983244 035 $a(OCoLC)892539570 035 $a(PPN)179767089 035 $a(EXLCZ)993710000000143805 100 $a20140621d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPrinciples of Harmonic Analysis /$fby Anton Deitmar, Siegfried Echterhoff 205 $a2nd ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (330 p.) 225 1 $aUniversitext,$x2191-6675 300 $aDescription based upon print version of record. 311 08$a3-319-05791-X 320 $aIncludes bibliographical references and index. 327 $a1. Haar Integration -- 2. Banach Algebras -- 3. Duality for Abelian Groups -- 4. The Structure of LCA-Groups -- 5. Operators on Hilbert Spaces -- 6. Representations -- 7. Compact Groups -- 8. Direct Integrals -- 9. The Selberg Trace Formula -- 10. The Heisenberg Group -- 11. SL2(R) -- 12. Wavelets -- 13. p-adic numbers and adeles -- A. Topology -- B. Measure and Integration -- C: Functional Analysis. 330 $aThis book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it. 410 0$aUniversitext,$x2191-6675 606 $aHarmonic analysis 606 $aInformation visualization 606 $aMathematics 606 $aAbstract Harmonic Analysis 606 $aData and Information Visualization 606 $aApplications of Mathematics 615 0$aHarmonic analysis. 615 0$aInformation visualization. 615 0$aMathematics. 615 14$aAbstract Harmonic Analysis. 615 24$aData and Information Visualization. 615 24$aApplications of Mathematics. 676 $a515.2433 700 $aDeitmar$b Anton$4aut$4http://id.loc.gov/vocabulary/relators/aut$066861 702 $aEchterhoff$b Siegfried$f1960-$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299991403321 996 $aPrinciples of Harmonic Analysis$92508619 997 $aUNINA