LEADER 01026nam--2200349---450- 001 990005864990203316 005 20130628135605.0 010 $a978-88-459-2775-1 035 $a000586499 035 $aUSA01000586499 035 $a(ALEPH)000586499USA01 035 $a000586499 100 $a20130628d2013----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ah|||z|||001yy 200 1 $aSotto il nome del cardinale$fEdgardo Franzosini 210 $aMilano$cAdelphi$d2013 215 $a169 p., 1 facsimile$d18 cm 225 2 $aPiccola biblioteca Adelphi$v643 410 0$12001$aPiccola biblioteca Adelphi$v643 600 1$aRipamonti,$bGiuseppe <1573-1643>$2BNCF 676 $a270.6092 700 1$aFRANZOSINI,$bEdgardo$0617399 801 0$aIT$bsalbc$gISBD 912 $a990005864990203316 951 $aX.2.B. 2234$b8853 L.G.$cX.2.B.$d00341698 959 $aBK 969 $aUMA 979 $aANNAMARIA$b90$c20130628$lUSA01$h1356 996 $aSotto il nome del cardinale$91086710 997 $aUNISA LEADER 03247nam0 2200613 i 450 001 VAN0110705 005 20230801123643.980 010 $a978-33-19-61599-8 100 $a20170914d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$fFriedrich Wehrung 210 $a[Cham]$cSpringer$d2017 215 $aVII, 240 p.$cill.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2188 500 1$3VAN0234305$aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 606 $a16E20$xGrothendieck groups, $K$-theory, etc. [MSC 2020]$3VANC019736$2MF 606 $a43A07$xMeans on groups, semigroups, etc.; amenable groups [MSC 2020]$3VANC021706$2MF 606 $a08B10$xCongruence modularity, congruence distributivity [MSC 2020]$3VANC022276$2MF 606 $a08Axx$xAlgebraic structures [MSC 2020]$3VANC022419$2MF 606 $a20M18$xInverse semigroups [MSC 2020]$3VANC023844$2MF 606 $a18A30$xLimits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020]$3VANC029032$2MF 606 $a20M14$xCommutative semigroups [MSC 2020]$3VANC029151$2MF 606 $a06E15$xStone spaces (Boolean spaces) and related structures [MSC 2020]$3VANC029542$2MF 606 $a19A31$x$K_0$ of group rings and orders [MSC 2020]$3VANC030740$2MF 606 $a46L80$x$K$-theory and operator algebras (including cyclic theory) [MSC 2020]$3VANC031147$2MF 606 $a06F05$xOrdered semigroups and monoids [MSC 2020]$3VANC031189$2MF 606 $a20M25$xSemigroup rings, multiplicative semigroups of rings [MSC 2020]$3VANC033168$2MF 606 $a28B10$xGroup- or semigroup-valued set functions, measures and integrals [MSC 2020]$3VANC033169$2MF 606 $a08Cxx$xOther classes of algebras [MSC 2020]$3VANC033170$2MF 606 $a16E50$xvon Neumann regular rings and generalizations (associative algebraic aspects) [MSC 2020]$3VANC033171$2MF 606 $a19A49$x$K_0$ of other rings [MSC 2020]$3VANC033172$2MF 610 $aAdditive homomorphism$9KW:K 610 $aBias$9KW:K 610 $aBoolean$9KW:K 610 $aCommutative$9KW:K 610 $aDistributive$9KW:K 610 $aEquidecomposable$9KW:K 610 $aInverse$9KW:K 610 $aRefinement Monoid$9KW:K 610 $aSemigroups$9KW:K 610 $aV-measure$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aWehrung$bFriedrich$3VANV071072$0512591 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-61599-8$zhttp://dx.doi.org/10.1007/978-3-319-61599-8 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0110705 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2188 20170914 996 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 997 $aUNICAMPANIA