LEADER 01243nam--2200373---450- 001 990005777980203316 005 20121109110147.0 010 $a0-7546-3315-2 035 $a000577798 035 $aUSA01000577798 035 $a(ALEPH)000577798USA01 035 $a000577798 100 $a20121109d2004----km-y0itay50------ba 101 $aeng 102 $aGB 105 $a||||||||001yy 200 1 $aDemilitarisation and peace-building in southern Africa$fedited by Peter Batchelor, Kees Kingma 210 $aAldershot$aBurlington$cAshgate$d2004 215 $avolumi$d24 cm 225 2 $a<> international political economy of new regionalism series 327 1 $a<> National and regional experiences 410 0$a<> international political economy of new regionalism series 606 0 $aPace$xTutela$yAfrica meridionale$2BNCF 676 $a327.170968 702 1$aBATCHELOR,$bPeter 702 1$aKINGMA,$bKees 801 0$aIT$bsalbc$gISBD 912 $a990005777980203316 951 $a327.170 DEM 1/2$b75262 G.$c327.170$d00317240 959 $aBK 969 $aECO 979 $aCHIARA$b90$c20121109$lUSA01$h1101 996 $aDemilitarisation and peace-building in southern Africa$91081616 997 $aUNISA LEADER 03206nam 2200493 450 001 996418203203316 005 20211014140147.0 010 $a3-030-49864-6 024 7 $a10.1007/978-3-030-49864-1 035 $a(CKB)5590000000005429 035 $a(DE-He213)978-3-030-49864-1 035 $a(MiAaPQ)EBC6382658 035 $a(MiAaPQ)EBC6523232 035 $a(Au-PeEL)EBL6382658 035 $a(OCoLC)1202745914 035 $a(PPN)258872195 035 $a(EXLCZ)995590000000005429 100 $a20211014d2020 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aArithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces $ehyperbolicity in Montre?al /$fMarc-Hubert Nicole, editor 205 $a1st ed. 2020. 210 1$aCham, Switzerland :$cSpringer,$d[2020] 210 4$d©2020 215 $a1 online resource (IX, 247 p. 26 illus., 7 illus. in color.) 225 1 $aCRM Short Courses,$x2522-5200 311 $a3-030-49863-8 327 $aLectures on the Ax?Schanuel Conjecture -- Arithmetic Aspects of Orbifold Pairs -- The Lang?Vojta Conjectures on Projective Pseudo-Hyperbolic Varieties -- Hyperbolicity of Varieties of Log General Type. 330 $aThis textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax?Schanuel conjecture for variations of Hodge structures; A broad introduction to the theory of orbifold pairs and Campana's conjectures, with a special emphasis on the arithmetic perspective; A systematic presentation and comparison between different notions of hyperbolicity, as an introduction to the Lang?Vojta conjectures in the projective case; An exploration of hyperbolicity and the Lang?Vojta conjectures in the general case of quasi-projective varieties. Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces is an ideal resource for graduate students and researchers in number theory, complex algebraic geometry, and arithmetic geometry. A basic course in algebraic geometry is assumed, along with some familiarity with the vocabulary of algebraic number theory. 410 0$aCRM Short Courses,$x2522-5200 606 $aGeometry, Algebraic 615 0$aGeometry, Algebraic. 676 $a516.35 702 $aNicole$b Marc-Hubert 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418203203316 996 $aArithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces$91887566 997 $aUNISA LEADER 00376ogm 2200157z- 450 001 9910909153903321 035 $a(CKB)5490000000038512 035 $a(EXLCZ)995490000000038512 100 $a20241126cuuuuuuuu -u- v 101 0 $aeng 200 10$aFunctionalism 210 $cINTELECOM 906 $aVIDEO 912 $a9910909153903321 996 $aFunctionalism$91032524 997 $aUNINA