LEADER 01200nam0-22003731i-450- 001 990005471980203316 005 20010829120000.0 035 $a000547198 035 $aUSA01000547198 035 $a(ALEPH)000547198USA01 035 $a000547198 100 $a20010829f----1994---|0itac50------ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aAnalisi economica della vita umana$ei metodi di valutazione empirica$eipotesi di lavoro per una guida regionale alle scelte pubbliche$ela valutazione di un bene intangibile e l'analisi costi-benefici$fdi Isabella Pierantoni 210 $a[Roma]$cISR 215 $av.$d25 cm 606 $aVita umana$xValutazione economica$2FI 620 $dRoma 676 $a368.07$v21 700 1$aPIERANTONI,$bIsabella$088811 712 $aISR 801 $aIT$bSOL$c20120104 912 $a990005471980203316 950 $aDIP.TO SCIENZE ECONOMICHE - (SA)$dDS 300 368.07 PIE$e7940 DISES 951 $a300 368.07 PIE$b7940 DISES 959 $aBK 969 $aDISES 979 $c20121027$lUSA01$h1532 979 $c20121027$lUSA01$h1613 996 $aAnalisi economica della vita umana$936598 997 $aUNISA NUM $aUSA7455 LEADER 02938nam0 2200625 i 450 001 VAN0122792 005 20230801020936.777 017 70$2N$a9789811329012 100 $a20190723d2018 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aSymmetry breaking for representations of rank one orthogonal groups II$fToshiyuki Kobayashi, Birgit Speh 210 $aSingapore$cSpringer$d2018 215 $aXV, 342 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2234 500 1$3VAN0234350$aSymmetry breaking for representations of rank one orthogonal groups II$91558274 606 $a11F70$xRepresentation-theoretic methods; automorphic representations over local and global fields [MSC 2020]$3VANC021444$2MF 606 $a53A31$xDifferential geometry of submanifolds of Möbius space [MSC 2020]$3VANC021522$2MF 606 $a22E30$xAnalysis on real and complex Lie groups [MSC 2020]$3VANC022552$2MF 606 $a22E46$xSemisimple Lie groups and their representations [MSC 2020]$3VANC022569$2MF 606 $a22E45$xRepresentations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020]$3VANC022570$2MF 606 $a58J70$xInvariance and symmetry properties for PDEs on manifolds [MSC 2020]$3VANC024164$2MF 610 $a(g,K) cohomology$9KW:K 610 $aAutomorphic forms$9KW:K 610 $aBranching law$9KW:K 610 $aConformal geometry$9KW:K 610 $aDifferential Forms$9KW:K 610 $aF-method$9KW:K 610 $aGegenbauer polynomial$9KW:K 610 $aGross-Prasad conjecture$9KW:K 610 $aIntertwining operator$9KW:K 610 $aJuhl operator$9KW:K 610 $aLie groups$9KW:K 610 $aLorentz group$9KW:K 610 $aOrthogonal group$9KW:K 610 $aPeriod$9KW:K 610 $aReductive Groups$9KW:K 610 $aRestriction of representation$9KW:K 610 $aSymmetry breaking operator$9KW:K 610 $aTempered representation$9KW:K 610 $aUnitary representations$9KW:K 610 $aVerma module$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aKobayashi$bToshiyuki$3VANV083001$0721059 701 1$aSpeh$bBirgit$3VANV094284$0766106 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-981-13-2901-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0122792 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2234 20190723 $sBuono 996 $aSymmetry breaking for representations of rank one orthogonal groups II$91558274 997 $aUNICAMPANIA