LEADER 00938nam--2200337---450- 001 990003686100203316 005 20120919120933.0 035 $a000368610 035 $aUSA01000368610 035 $a(ALEPH)000368610USA01 035 $a000368610 100 $a20120911d1947----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aEstimo edilizio$fManlio Budinis 210 $aMilano$cHoepli$d1947 215 $aXVI, 357 p.$d25 cm 606 0 $aEstimo edilizio 676 $a333.338 700 1$aBUDINIS,$bManlio$03112 801 0$aIT$bsalbc$gISBD 912 $a990003686100203316 951 $a333.338 BUD 1$b22371 Ing.$c333.338$d00316168 951 $a333.338 BUD 1 a$b22242 Ing.$c333.338$d00316403 959 $aBK 969 $aTEC 979 $aIANNONE$b90$c20120911$lUSA01$h1048 979 $aIANNONE$b90$c20120919$lUSA01$h1209 996 $aEstimo edilizio$9106533 997 $aUNISA LEADER 03221nam 2200589 450 001 9910788887803321 005 20180613001253.0 010 $a1-4704-0717-5 035 $a(CKB)3360000000464488 035 $a(EBL)3114004 035 $a(SSID)ssj0000888888 035 $a(PQKBManifestationID)11523055 035 $a(PQKBTitleCode)TC0000888888 035 $a(PQKBWorkID)10875473 035 $a(PQKB)11093563 035 $a(MiAaPQ)EBC3114004 035 $a(RPAM)3313904 035 $a(PPN)195411854 035 $a(EXLCZ)993360000000464488 100 $a20140908h19841984 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDimensions of spaces of Siegel cusp forms of degree two and three /$fMinking Eie 210 1$aProvidence, Rhode Island, United States :$cAmerican Mathematical Society,$d1984. 210 4$dİ1984 215 $a1 online resource (194 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 50, Number 304 300 $a"July 1984, Volume 50, Number 304 (first of 3 numbers)"--Cover. 311 $a0-8218-2305-1 320 $aIncludes bibliographical references. 327 $a""2.3 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (I)""""2.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (II)""; ""2.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""2.6 Contributions from conjugacy classes of unipotent elements""; ""2.7 A dimension formula for the vector space of cusp forms with respect to Sp (2 , Z)""; ""CHAPTER III: REPRESENTATIVES OF CONJUGACY CLASSES OF ELEMENTS OF Sp (3 , Z) IN Sp (3 , R)""; ""3.1 Introduction"" 327 $a""4.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points""""4.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""4.6 Second case of conjugacy classes of elements having a one-dimensional set of fixed points""; ""4.7 Second case of conjugacy classes of elements having a two-dimensional set of fixed points""; ""CHAPTER V: CONTRIBUTIONS FROM CONJUGACY CLASSES IN I??[sub(0)]""; ""5.1 Introduction""; ""5.2 A dimension formula for the principal congruencesubgroup I??[sub(2)](N)"" 327 $a""5.3 Contributions from I??[sub(0)](I)""""5.4 A dimension formula for the principal congruence subgroup I??[sub(3)](N)""; ""5.5 Contributions from I??[sub(0)](II)""; ""5.6 A final remark""; ""REFERENCES"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 50, Number 304. 606 $aCusp forms (Mathematics) 606 $aSelberg trace formula 606 $aIntegrals 615 0$aCusp forms (Mathematics) 615 0$aSelberg trace formula. 615 0$aIntegrals. 676 $a512/.72 700 $aEie$b Minking$f1952-$01479861 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788887803321 996 $aDimensions of spaces of Siegel cusp forms of degree two and three$93696235 997 $aUNINA