LEADER 00957nam0-2200301---450- 001 990009561080403321 005 20120423144335.0 035 $a000956108 035 $aFED01000956108 035 $a(Aleph)000956108FED01 035 $a000956108 100 $a20120423e19631906km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $aEpigraphische Beiträge zur sozial-politischen Geschichte Athens im Zeitalter des Demosthenes$fJohannes Sundwall 210 $aAalen$cScientia Verlag$d1963 215 $a93 p.$d24 cm 225 1 $aKlio$v4 324 $aRiproduzione dell'edizione 1906 700 1$aSundwall,$bJohannes$c<1877- >$0219769 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009561080403321 952 $aArangio Ruiz F VII 008$fDDR 959 $aDDR 996 $aEpigraphische Beiträge zur sozial-politischen Geschichte Athens im Zeitalter des Demosthenes$9550423 997 $aUNINA LEADER 01025nam2-2200361---450- 001 990003486640203316 005 20110120104118.0 035 $a000348664 035 $aUSA01000348664 035 $a(ALEPH)000348664USA01 035 $a000348664 100 $a20110120d1970----km-y0itay0103----ba 101 $afre 102 $aFR 105 $aa|||||||001yy 200 1 $a<> institutions de l'empire byzantin$fLouis Bréhier 210 $aParis$cA. Michel$d1970 215 $a636 p.$cill.$d18 cm 225 2 $a<> evolution de l'humanité 410 0$12001$a<> evolution de l'humanité 454 1$12001 461 1$1001000269328$12001$a<> monde byzantin 606 0 $aCiviltà bizantina 676 $a949.5 700 1$aBREHIER,$bLouis$0406804 801 0$aIT$bsalbc$gISBD 912 $a990003486640203316 951 $aBYZ 28$b183 DSA/IFCL 959 $aBK 969 $aDSA 979 $aDSA$b90$c20110120$lUSA01$h1041 996 $aInstitutions de l'Empire byzantin$965503 997 $aUNISA LEADER 02152nam0 22005173i 450 001 VAN0276773 005 20240604122812.934 017 70$2N$a9783030950880 100 $a20240604d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆA ‰Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions$fJean-Luc Marichal, Naïm Zenaïdi 210 $aCham$cSpringer$d2022 215 $axviii, 323 p.$cill.$d24 cm 410 1$1001VAN0102857$12001 $aDevelopments in Mathematics$1210 $aBerlin [etc.]$cSpringer$v70 610 $aBinet's Function$9KW:K 610 $aBohr-Mollerup's Theorem$9KW:K 610 $aDifference equations$9KW:K 610 $aEuler Product Form$9KW:K 610 $aEuler's Constant$9KW:K 610 $aEuler's Infinite Product$9KW:K 610 $aEuler's Reflection Formula$9KW:K 610 $aGamma Function$9KW:K 610 $aGauss Multiplication Formula$9KW:K 610 $aGauss' Limit$9KW:K 610 $aGeneralized Stieltjes Constants$9KW:K 610 $aHigher Order Convexity$9KW:K 610 $aHurwitz zeta function$9KW:K 610 $aPolygamma Functions$9KW:K 610 $aPrincipal Indefinite Sums$9KW:K 610 $aRaabe's Formula$9KW:K 610 $aStirling's Formula$9KW:K 610 $aWeierstrass' Infinite Product$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aMarichal$bJean-Luc$3VANV229468$01255007 701 1$aZenaïdi$bNaïm$3VANV229469$01255008 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-030-95088-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0276773 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-Book 8640 $e08eMF8640 20240605 996 $aGeneralization of Bohr-Mollerup's Theorem for Higher Order Convex Functions$94161042 997 $aUNICAMPANIA