LEADER 01151nam--2200361---450- 001 990003070110203316 005 20080418161239.0 010 $a978-3-540-69151-8 035 $a000307011 035 $aUSA01000307011 035 $a(ALEPH)000307011USA01 035 $a000307011 100 $a20080226d2007----km-y0itay50------ba 101 $aeng 102 $aDE 105 $ay---||||001yy 200 1 $aLectures on the automorphism groups of Kobayashi-Hyperbolic manifolds$fAlexander Isaev 210 $aBerlin [etc.]$cSpringer$dcopyr. 2007 215 $aVIII, 139 p.$d24 cm 225 2 $aLecture Notes in Mathematics$v1902 410 0$12001$aLecture Notes in Mathematics$v1902 610 0 $aSpazi iperbolici$xAutomorfismi 676 $a511.5 700 1$aISAEV,$bAlexander$0284214 801 0$aIT$bsalbc$gISBD 912 $a990003070110203316 951 $a510 LNM 1902$b34558/CBS$c510$d00224973 959 $aBK 969 $aSCI 979 $aANGELA$b90$c20080226$lUSA01$h1027 979 $aANGELA$b90$c20080418$lUSA01$h1612 996 $aLectures on the automorphism groups of Kobayashi-hyperbolic manifolds$9230599 997 $aUNISA LEADER 05077nam 22012973a 450 001 9910346685203321 005 20250203235437.0 010 $a9783039212842 010 $a3039212842 024 8 $a10.3390/books978-3-03921-284-2 035 $a(CKB)4920000000094817 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54275 035 $a(ScCtBLL)141b6004-2f48-4a0a-9c39-eaf6cb107e0b 035 $a(OCoLC)1126194194 035 $a(oapen)doab54275 035 $a(EXLCZ)994920000000094817 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNanoparticle-Reinforced Polymers$fAna Díez-Pascual 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (334 p.) 311 08$a9783039212835 311 08$a3039212834 330 $aThis book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications. 606 $aChemistry$2bicssc 610 $agraphene oxide 610 $alatex compounding method 610 $agold nanoparticles 610 $aratiometric temperature sensing 610 $acatalysis 610 $aconjugated polymer nanoparticles 610 $acarrier transport 610 $apolymer-NP interface 610 $ananocomposites 610 $apolyethylene 610 $astructure-property relationship 610 $achemical and physical interface 610 $aSiO2/TiO2 nanocomposite 610 $ananoparticles 610 $aseparation 610 $aconductive polymer 610 $aclays 610 $aorganic light-emitting diodes (OLEDs) 610 $ananocomposite 610 $amolecular chain motion 610 $ananosheets 610 $amorphology 610 $ametal oxides 610 $ahybrid hydrogels 610 $agas barrier properties 610 $ananomaterials 610 $ain situ synthesis 610 $amechanical properties 610 $apower cable insulation 610 $ainorganic nanotubes 610 $asurface modification of silica 610 $aoptoelectronic properties 610 $alayered structures 610 $asol-gel 610 $anano-hybrids 610 $afluorescent assay 610 $aN-isopropylacrylamide 610 $abismaleimide 610 $aelectrical property 610 $asolar cell 610 $aN-isopropylmethacrylamide 610 $aSiO2 microspheres 610 $aPFO/MEH-PPV hybrids 610 $apower-conversion efficiency 610 $ain-situ synthesis 610 $aelectrical breakdown 610 $aactive layer 610 $acrystallization kinetics 610 $apolypropylene nanocomposite 610 $aelectric energy storage 610 $asilver ions 610 $acomposite membrane 610 $acarbon nanoparticles 610 $agraphene 610 $acomposites 610 $aelectrode 610 $areduced graphene oxide 610 $aselective adsorption 610 $athermoresponsive hyperbranched polymer 610 $acolorimetric sensor 610 $aFRET 610 $apolymers 610 $agraphene-like WS2 610 $apolymer-matrix composites 610 $athermoplastic nanocomposite 610 $afluorescence resonance energy transfer 610 $aPHBV 610 $amelamine 610 $aAg nanoparticles 610 $aadhesion 610 $achain topology 610 $ainterfacial layer 610 $asilica/NR composite 615 7$aChemistry 700 $aDíez-Pascual$b Ana$01279651 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346685203321 996 $aNanoparticle-Reinforced Polymers$93026481 997 $aUNINA