LEADER 01073nam2-2200337---450- 001 990002782270203316 005 20060717113918.0 010 $a3-534-012010-1 035 $a000278227 035 $aUSA01000278227 035 $a(ALEPH)000278227USA01 035 $a000278227 100 $a20060717d1985----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $aa|||||||001yy 200 1 $a<<1.>> : Ideen zu einer Geschichte der Musiktheorie$eEinleitung in das Gesamtwerk 210 $aDarmstadt$cWissenschaftliche Buchgesellschaft$d1985 215 $aXII, 191 p., [8] c. di tav.$cill.$d23 cm 461 1$1001000146231$12001$aGeschichte der Musiktheorie 606 0 $aMusica$xEstetica$xStoria 676 $a781 801 0$aIT$bsalbc$gISBD 912 $a990002782270203316 951 $aXIII.3.B. 51/ 1$b188619 L.M.$cXIII.3.$d00127185 959 $aBK 969 $aUMA 979 $aANNAMARIA$b90$c20060717$lUSA01$h1130 979 $aANNAMARIA$b90$c20060717$lUSA01$h1139 996 $aIdeen zu einer Geschichte der Musiktheorie$9150864 997 $aUNISA LEADER 02661nam0 2200517 i 450 001 VAN0115077 005 20220314015537.882 017 70$2N$a978-81-322-2812-7 100 $a20180221d2016 |0itac50 ba 101 $aeng 102 $aIN 105 $a|||| ||||| 200 1 $aNonlinear ordinary differential equations$eanalytical approximation and numerical methods$fMartin Hermann, Masoud Saravi 210 $a[New Delhi]$cSpringer$d2016 215 $aXVI, 310 p.$cill.$d24 cm 500 1$3VAN0242982$aNonlinear ordinary differential equations$91523517 606 $a65-XX$xNumerical analysis [MSC 2020]$3VANC019772$2MF 606 $a34C23$xBifurcation theory for ordinary differential equation [MSC 2020]$3VANC019985$2MF 606 $a65Lxx$xNumerical methods for ordinary differential equations [MSC 2020]$3VANC020052$2MF 606 $a34-XX$xOrdinary differential equations [MSC 2020]$3VANC021251$2MF 606 $a65L10$xNumerical solution of boundary value problems involving ordinary differential equations [MSC 2020]$3VANC022675$2MF 606 $a34A34$xNonlinear ordinary differential equations and systems, general theory [MSC 2020]$3VANC024338$2MF 606 $a34A35$xOrdinary differential equations of infinite order [MSC 2020]$3VANC024634$2MF 606 $a34B15$xNonlinear boundary value problems for ordinary differential equations [MSC 2020]$3VANC029108$2MF 610 $aAdomian Decomposition Method$9KW:K 610 $aAnalytical and Numerical Techniques for Bifurcation Problems$9KW:K 610 $aEnergy Balance Method$9KW:K 610 $aHomotopy Analysis Method$9KW:K 610 $aNonlinear Method of Complementary Functions$9KW:K 610 $aNonlinear Stabilized March Method$9KW:K 610 $aOrdinary differential equations$9KW:K 610 $aPerturbation Method$9KW:K 610 $aSingle and Multiple Shooting Method$9KW:K 610 $aVariational Approach Method$9KW:K 620 $aIN$dNew Delhi$3VANL001098 700 1$aHermann$bMartin$3VANV081373$0721182 701 1$aSaravi$bMasoud$3VANV081374$0721181 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-81-322-2812-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0115077 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2411 $e15EB 2411 20180221 996 $aNonlinear ordinary differential equations$91523517 997 $aUNICAMPANIA