LEADER 01297nam--2200421---450- 001 990002764630203316 005 20060621105103.0 010 $a88-491-2570-4 035 $a000276463 035 $aUSA01000276463 035 $a(ALEPH)000276463USA01 035 $a000276463 100 $a20060621d2005----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aCommentario de le cose de' Turchi$fPaolo Giovio$ga cura di Lara Michelacci 210 $aBologna$cCLUEB$dcopyr. 2005 215 $a187 p.$d21 cm 225 2 $aHeuresis$v1. 225 2 $aQuaderni di schede umanistiche$v10 410 0$12001$aHeuresis 410 0$12001$aQuaderni di schede umanistiche 600 1$aGiovio,$bPaolo$xCommentario de le cose de'Turchi 676 $a858.3 700 1$aGIOVIO,$bPaolo$0440498 702 1$aMICHELACCI,$bLara 801 0$aIT$bsalbc$gISBD 912 $a990002764630203316 951 $aVI.3.B. 193 (V C 1619)$b189107 L.M.$cV A$d00125388 959 $aBK 969 $aUMA 979 $aPAOLA$b90$c20060621$lUSA01$h1038 979 $aPAOLA$b90$c20060621$lUSA01$h1041 979 $aPAOLA$b90$c20060621$lUSA01$h1047 979 $aPAOLA$b90$c20060621$lUSA01$h1051 996 $aCommentario de le cose de' turchi$9246986 997 $aUNISA LEADER 02364nam 2200565 450 001 9910827447903321 005 20220901070447.0 010 $a0-8218-7593-0 035 $a(CKB)3240000000069532 035 $a(EBL)3113065 035 $a(SSID)ssj0000629277 035 $a(PQKBManifestationID)11380077 035 $a(PQKBTitleCode)TC0000629277 035 $a(PQKBWorkID)10731109 035 $a(PQKB)11605335 035 $a(MiAaPQ)EBC3113065 035 $a(RPAM)2315897 035 $a(PPN)197103251 035 $a(EXLCZ)993240000000069532 100 $a19811211h19821982 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComplex contour integral representation of cardinal spline functions /$fWalter Schempp 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1982] 210 4$dİ1982 215 $a1 online resource (125 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v7$x0271-4132 300 $aDescription based upon print version of record. 311 $a0-8218-5006-7 320 $aIncludes bibliographical references and index. 327 $aContents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- References -- Subject Index -- Author Index. 410 0$aContemporary mathematics (American Mathematical Society).$v7$x0271-4132 606 $aSpline theory 606 $aIntegral transforms 606 $aIntegral representations 615 0$aSpline theory. 615 0$aIntegral transforms. 615 0$aIntegral representations. 676 $a511/.42 700 $aSchempp$b W$g(Walter),$f1938-$048127 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827447903321 996 $aComplex contour integral representation of cardinal spline functions$9384324 997 $aUNINA