LEADER 01079nam--2200373---450- 001 990002719790203316 005 20090202115441.0 010 $a88-424-9689-8 035 $a000271979 035 $aUSA01000271979 035 $a(ALEPH)000271979USA01 035 $a000271979 100 $a20060314d2006----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aImprese e cultura$el'utopia dell'ENI$fClaudio Corduas 210 $aMilano$cBruno Mondadori$dcopyr. 2006 215 $a144 p.$d17 p. 225 2 $aTesti e pretesti 410 0$1001$12001$aTesti e pretesti 606 0 $aENI$xStoria 606 0 $aIndustria petrolifera Italia 676 $a338.766550945 700 1$aCORDUAS,$bClaudio$0527311 801 0$aIT$bsalbc$gISBD 912 $a990002719790203316 951 $a338.766 COR 1 (ISE II 429)$b187365 L.M.$cISE II$d00177433 959 $aBK 969 $aUMA 979 $aCHIARA$b90$c20060314$lUSA01$h1117 979 $aRSIAV1$b90$c20090202$lUSA01$h1154 996 $aImprese e cultura$91000230 997 $aUNISA LEADER 02755nam0 22006013i 450 001 VAN0248835 005 20230529022356.841 017 70$2N$a9783030528935 100 $a20220801d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aComputational diffusion MRI$eMICCAI Workshop, Shenzhen, China, October 2019$fElisenda Bonet-Carne ... [et al.] editors 210 $aCham$cSpringer$d2020 215 $axi, 210 p.$cill.$d24 cm 410 1$1001VAN0068552$12001 $aMathematics and visualization$1210 $aBerlin [etc.]$cSpringer$d2001- 500 1$3VAN0236717$aComputational diffusion MRI : International MICCAI Workshop, Granada, Spain, September 2018 606 $a00B25$xProceedings of conferences of miscellaneous specific interest [MSC 2020]$3VANC020732$2MF 606 $a92-XX$xBiology and other natural sciences [MSC 2020]$3VANC020839$2MF 606 $a92B20$xNeural networks for/in biological studies, artificial life and related topics [MSC 2020]$3VANC021414$2MF 606 $a92C55$xBiomedical imaging and signal processing [MSC 2020]$3VANC022145$2MF 610 $aBody MRI$9KW:K 610 $aBrain MRI$9KW:K 610 $aCombined diffusion-relaxometry MRI$9KW:K 610 $aComputational techniques$9KW:K 610 $aConnectomics$9KW:K 610 $aDiffusion MRI$9KW:K 610 $aFibre tractography$9KW:K 610 $aImage Analysis$9KW:K 610 $aImage and Signal Processing$9KW:K 610 $aImage and signal acquisition$9KW:K 610 $aImage and signal modelling$9KW:K 610 $aImage reconstruction$9KW:K 610 $aImage registration$9KW:K 610 $aMachine learning$9KW:K 610 $aMedical image analysis$9KW:K 610 $aMedical image computing$9KW:K 610 $aMedical visualisation$9KW:K 610 $aMicrostructure imaging$9KW:K 610 $aMultidimensional diffusion MRI$9KW:K 610 $aNeuroimaging$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aBonet-Carne$bElisenda$3VANV098194 712 12$aInternational Workshop on Computational Diffusion MRI$f2019$eShenzhen, China$3VANV203631 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-52893-5$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0248835 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4597 $e08eMF4597 20220801 996 $aComputational diffusion MRI$91409948 997 $aUNICAMPANIA