LEADER 01218nam--2200373---450- 001 990002027690203316 005 20051006093450.0 035 $a000202769 035 $aUSA01000202769 035 $a(ALEPH)000202769USA01 035 $a000202769 100 $a20040924d1965----km-y0itay0103----ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> formazione dell'insegnante negli Stati Uniti$fCarleton W. Washburne$g[traduzione di Olga Devoto] 210 $aFirenze$cLa nuova Italia$d1965 215 $a57 p.$d20 cm 225 2 $aEducatori antichi e moderni$v164 410 0$12001$aEducatori antichi e moderni$v164 454 1$12001$a<> education of teachers in the United States$939698 461 1$1001-------$12001 700 1$aWASHBURNE,$bCarleton W.$0389872 702 1$aDEVOTO,$bOlga 801 0$aIT$bsalbc$gISBD 912 $a990002027690203316 951 $aII.4. 2846(VI C 1712)$b36813 L.M.$cVI C 959 $aBK 969 $aUMA 979 $aSIAV4$b10$c20040924$lUSA01$h1724 979 $aSIAV4$b10$c20040924$lUSA01$h1725 979 $aCOPAT3$b90$c20051006$lUSA01$h0934 996 $aEducation of teachers in the United States$939698 997 $aUNISA LEADER 01576nam--2200433---450- 001 990002275590203316 005 20090601125927.0 035 $a000227559 035 $aUSA01000227559 035 $a(ALEPH)000227559USA01 035 $a000227559 100 $a20041216g19761982km-y0itay0103----ba 101 0 $afre 102 $aFR 105 $a||||||||001yy 200 1 $a<> Reforme du divorse$fJacques Massip$gPreface de Jean Carbonnier 210 $aParis$cRepertoire du Notariat Defrenois$d[1976-1982] 215 $a2 v.$d24 cm 327 1 $a<1.> : Commentaire des lois n 75-617 et 75-618 du 11 juillet 1975 et des textes d'application / Jacques Massip ; Preface de Jean Carbonnier. - 451 p. ; <2.> : Formules d'application / Jacques Massip, Georges Morin. - 240 p. 410 0$12001 454 1$12001 461 1$1001-------$12001 517 $aCommentaire des lois n 75-617 et 75-618 du 11 juillet 1975 et des textes d'application 517 $aFormules d'application 606 0 $aDivorzio$yFrancia$xLegislazione 676 $a346.015 700 1$aMASSIP,$bJacques$0520119 702 1$aCARBONNIER,$bJean 702 1$aMORIN,$bGeorges 801 0$aIT$bsalbc$gISBD 912 $a990002275590203316 951 $aXXV.1.L 54/1 (IG XXI 169/I)$b22014 E.C.$cIG XXI 169$d00230948 951 $aXXV.1.L 54/2 (IG XXI 169/II)$b22015 E.C.$cIG XXI 169$d00230945 959 $aBK 969 $aGIU 979 $aSIAV3$b10$c20041216$lUSA01$h0952 979 $aRSIAV4$b90$c20090601$lUSA01$h1259 996 $aReforme du divorse$91067187 997 $aUNISA LEADER 05265nam 2200625 a 450 001 9910779055503321 005 20230802004652.0 010 $a981-4350-47-8 035 $a(CKB)2550000000087834 035 $a(EBL)846098 035 $a(OCoLC)851159929 035 $a(SSID)ssj0000647805 035 $a(PQKBManifestationID)11399037 035 $a(PQKBTitleCode)TC0000647805 035 $a(PQKBWorkID)10593630 035 $a(PQKB)10599427 035 $a(MiAaPQ)EBC846098 035 $a(WSP)00008151 035 $a(Au-PeEL)EBL846098 035 $a(CaPaEBR)ebr10529384 035 $a(CaONFJC)MIL498456 035 $a(EXLCZ)992550000000087834 100 $a20120202d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSymmetry-adapted basis sets$b[electronic resource] $eautomatic generation for problems in chemistry and physics /$fJohn Scales Avery, Sten Rettrup, James Emil Avery 210 $aSingapore $cWorld Scientific$dc2012 215 $a1 online resource (239 p.) 300 $aDescription based upon print version of record. 311 $a981-4350-46-X 320 $aIncludes bibliographical references and index. 327 $aContents; Preface; 1. GENERAL CONSIDERATIONS; 1.1 The need for symmetry-adapted basis functions; 1.2 Fundamental concepts; 1.3 Definition of invariant blocks; 1.4 Diagonalization of the invariant blocks; 1.5 Transformation of the large matrix to block-diagonal form; 1.6 Summary of the method; 2. EXAMPLES FROM ATOMIC PHYSICS; 2.1 The Hartree-Fock-Roothaan method for calculating atomic orbitals; 2.2 Automatic generation of symmetry-adapted configurations; 2.3 Russell-Saunders states; 2.4 Some illustrative examples; 2.5 The Slater-Condon rules 327 $a2.6 Diagonalization of invariant blocks using the Slater-Condon rules3. EXAMPLES FROM QUANTUM CHEMISTRY; 3.1 The Hartree-Fock-Roothaan method applied to molecules; 3.2 Construction of invariant subsets; 3.3 The trigonal group C3v; the NH3 molecule; 4. GENERALIZED STURMIANS APPLIED TO ATOMS; 4.1 Goscinskian configurations; 4.2 Relativistic corrections; 4.3 The large-Z approximation: Restriction of the basis set to an R-block; 4.4 Electronic potential at the nucleus in the large-Z approximation; 4.5 Core ionization energies; 4.6 Advantages and disadvantages of Goscinskian configurations 327 $a4.7 R-blocks, invariant subsets and invariant blocks4.8 Invariant subsets based on subshells; Classification according to ML and Ms; 4.9 An atom surrounded by point charges; 5. MOLECULAR ORBITALS BASED ON STURMIANS; 5.1 The one-electron secular equation; 5.2 Shibuya-Wulfman integrals and Sturmian overlap integrals evaluated in terms of hyperpherical harmonics; 5.3 Molecular calculations using the isoenergetic configurations; 5.4 Building Tvv(N) and vv(N) from 1-electron components; 5.5 Interelectron repulsion integrals for molecular Sturmians from hyperspherical harmonics 327 $a5.6 Many-center integrals treated by Gaussian expansions (Appendix E)5.7 A pilot calculation; 5.8 Automatic generation of symmetry-adapted basis functions; 6. AN EXAMPLE FROM ACOUSTICS; 6.1 The Helmholtz equation for a non-uniform medium; 6.2 Homogeneous boundary conditions at the surface of a cube; 6.3 Spherical symmetry of v(x); nonseparability of the Helmholtz equation; 6.4 Diagonalization of invariant blocks; 7. AN EXAMPLE FROM HEAT CONDUCTION; 7.1 Inhomogeneous media; 7.2 A 1-dimensional example; 7.3 Heat conduction in a 3-dimensional inhomogeneous medium 327 $a8. SYMMETRY-ADAPTED SOLUTIONS BY ITERATION8.1 Conservation of symmetry under Fourier transformation; 8.2 The operator - + p2k and its Green's function; 8.3 Conservation of symmetry under iteration of the Schrodinger equation; 8.4 Evaluation of the integrals; 8.5 Generation of symmetry-adapted basis functions by iteration; 8.6 A simple example; 8.7 An alternative expansion of the Green's function that applies to the Hamiltonian formulation of physics; Appendix A REPRESENTATION THEORY OF FINITE GROUPS; A.1 Basic definitions; A.2 Representations of geometrical symmetry groups 327 $aA.3 Similarity transformations 330 $aIn theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding eigenfunctions and eigenvalues for the Hamiltonian of a many-particle system is usually so difficult that it requires approximate methods, the most common of which is expansion of the eigenfunctions in terms of basis functions that obey the boundary conditions of the problem. The computational effort needed 606 $aSymmetry (Physics) 615 0$aSymmetry (Physics) 676 $a530.1 676 $a539.725 700 $aAvery$b John$f1933-$0624733 701 $aRettrup$b Sten$01550309 701 $aAvery$b James$01545355 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910779055503321 996 $aSymmetry-adapted basis sets$93808985 997 $aUNINA