LEADER 01192nam2-2200385---450- 001 990003141140203316 005 20080930145433.0 010 $a3-540-21505-0 035 $a000314114 035 $aUSA01000314114 035 $a(ALEPH)000314114USA01 035 $a000314114 100 $a20080909d2004----km-y0itay50------ba 101 $aeng 102 $aDE 105 $ay---||||001yy 200 1 $aK3 Projective models in scrolls$fTrygve Johnsen, Andreas Leopold Knutsen 210 $aBerlin [etc.]$cSpringer$dcopyr. 2004 215 $aVIII, 164 p.$d24 cm 225 2 $aLecture notes in mathematics$v1842 410 0$12001$aLecture notes in mathematics 461 1$1001000315290$12001$aLecture notes in mathematics 606 0 $aTeoria dell'omologia 676 $a514.23 700 1$aJOHNSEN,$bTrygve$0283550 701 1$aKNUTSEN,$bAndreas Leopold$0283551 801 0$aIT$bsalbc$gISBD 912 $a990003141140203316 951 $a510 LNM 1842$b30610/CBS$c510$d00114401 959 $aBK 969 $aSCI 979 $aCBAS$b10$c20080909$lUSA01$h1001 979 $aANGELA$b90$c20080930$lUSA01$h1454 996 $aK3 projective models in scrolls$9667871 997 $aUNISA LEADER 01277nam--2200373---450- 001 990002262040203316 005 20091029104050.0 035 $a000226204 035 $aUSA01000226204 035 $a(ALEPH)000226204USA01 035 $a000226204 100 $a20041213d1973----km-y0itay0103----ba 101 $aeng 102 $aUK 105 $a||||||||001yy 200 1 $aNew directions in the law of the Sea$fHuston Lay, Robin Churchill, Myron Nordquist 210 $aLondon$cOceana publ.$d1973 215 $av$d22 cm 327 1 $a : Documents. - : Collected papers/ edited by H. Lay, R Churchill, M. Nordquist 410 0$12001 454 1$12001 461 1$1001-------$12001 700 1$aLAY,$bHouston Churchill$0570198 801 0$aIT$bsalbc$gISBD 912 $a990002262040203316 951 $aXXIII.1.F. 93 1 (IG VIII 14 535/I)$b34884 G.$cXXIII.1.F. 93 1 (IG VIII 14 535)$d00251151 951 $aXXIII.1.F. 93 3 (IG VIII 14 535/III)$b34886 G.$cXXIII.1.F. 93 3 (IG VIII 14)$d00251152 959 $aBK 969 $aGIU 979 $aSIAV1$b10$c20041213$lUSA01$h1303 979 $aRSIAV4$b90$c20091029$lUSA01$h1037 979 $aRSIAV4$b90$c20091029$lUSA01$h1040 996 $aNew directions in the law of the Sea$91066643 997 $aUNISA LEADER 03987nam 22006135 450 001 9910154745503321 005 20190708092533.0 010 $a1-4008-8251-6 024 7 $a10.1515/9781400882519 035 $a(CKB)3710000000631327 035 $a(SSID)ssj0001651253 035 $a(PQKBManifestationID)16425331 035 $a(PQKBTitleCode)TC0001651253 035 $a(PQKBWorkID)12183564 035 $a(PQKB)10810515 035 $a(MiAaPQ)EBC4738736 035 $a(DE-B1597)467967 035 $a(OCoLC)979747115 035 $a(DE-B1597)9781400882519 035 $a(Perlego)736278 035 $a(EXLCZ)993710000000631327 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCommensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 /$fG. Daniel Mostow, Pierre Deligne 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1994 215 $a1 online resource (196 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v313 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a0-691-00096-4 311 08$a0-691-03385-4 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tCONTENTS -- $tACKNOWLEDGMENTS -- $t§1. INTRODUCTION -- $t§2. PICARD GROUP AND COHOMOLOGY -- $t§3. COMPUTATIONS FOR Q AND Q+ -- $t§4. LAURICELLA'S HYPERGEOMETRIC FUNCTIONS -- $t§5. GELFAND'S DESCRIPTION OF HYPERGEOMETRIC FUNCTIONS -- $t§6. STRICT EXPONENTS -- $t§7. CHARACTERIZATION OF HYPERGEOMETRIC-LIKE LOCAL SYSTEMS -- $t§8. PRELIMINARIES ON MONODROMY GROUPS -- $t§9. BACKGROUND HEURISTICS -- $t§10. SOME COMMENSURABILITY THEOREMS -- $t§11. ANOTHER ISOGENY -- $t§12. COMMENSURABILITY AND DISCRETENESS -- $t§13. AN EXAMPLE -- $t§14. ORBIFOLD -- $t§15. ELLIPTIC AND EUCLIDEAN ?'S, REVISITED -- $t§16. LIVNE'S CONSTRUCTION OF LATTICES IN PU(1,2) -- $t§17. LIN E ARRANGEMENTS: QUESTIONS -- $tBibliography 330 $aThe first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable. 410 0$aAnnals of mathematics studies ;$vno. 132. 606 $aHypergeometric functions 606 $aMonodromy groups 606 $aLattice theory 615 0$aHypergeometric functions. 615 0$aMonodromy groups. 615 0$aLattice theory. 676 $a515/.25 700 $aDeligne$b Pierre, $042896 702 $aMostow$b G. Daniel, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154745503321 996 $aCommensurabilities among Lattices in PU (1,n). (AM-132), Volume 132$92785739 997 $aUNINA