LEADER 01057nam--2200361---450- 001 990002160640203316 005 20090211111806.0 035 $a000216064 035 $aUSA01000216064 035 $a(ALEPH)000216064USA01 035 $a000216064 100 $a20041111d1970----km-y0itay0103----ba 101 $afre 102 $aFR 105 $a||||||||001yy 200 1 $a<> secret bancaire$eetude de droit compare$eFrance, Suisse, Liban$fpar Raymond Farhat$gpreface de Michel Vasseur 210 $aParis$cPichon et Durand-Auzias$d1970 215 $aIII, 285 p.$d26 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 676 $a332.6 700 1$aFARHAT,$bRaymond$0493552 702 1$aVASSEUR,$bMichel 801 0$aIT$bsalbc$gISBD 912 $a990002160640203316 951 $a332.6 FAR 1 (IRA 31 1)$b20040 E.C.$cIRA 31$d00012859 959 $aBK 969 $aECO 979 $aSIAV7$b10$c20041111$lUSA01$h0930 979 $aRSIAV2$b90$c20090211$lUSA01$h1118 996 $aSecret bancaire$9426960 997 $aUNISA LEADER 02932nam0 2200589 i 450 001 VAN0054942 005 20240214100540.703 010 $a978-35-402-3030-4 100 $a20061030d2004 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aFunctional analytic methods for evolution equations$fG. Da Prato ... [et al.]$geditors: M. Iannelli, R. Nagel, S. Piazzera 210 $aBerlin$cSpringer$d2004 215 $aVIII, 472 p.$d24 cm 300 $aPubblicazione disponibile anche in formato elettronico 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1855 500 1$3VAN0234495$aFunctional analytic methods for evolution equations$9752167 606 $a60J25$xContinuous-time Markov processes on general state spaces [MSC 2020]$3VANC019839$2MF 606 $a47D06$xOne-parameter semigroups and linear evolution equations [MSC 2020]$3VANC020305$2MF 606 $a47Axx$xGeneral theory of linear operators [MSC 2020]$3VANC020680$2MF 606 $a34Gxx$xDifferential equations in abstract spaces [MSC 2020]$3VANC021638$2MF 606 $a34K30$xFunctional-differential equations in abstract spaces [MSC 2020]$3VANC021639$2MF 606 $a35K90$xAbstract parabolic equations [MSC 2020]$3VANC021640$2MF 606 $a42A45$xMultipliers in one variable harmonic analysis [MSC 2020]$3VANC021641$2MF 606 $a47D07$xMarkov semigroups and applications to diffusion processes [MSC 2020]$3VANC021642$2MF 606 $a49J20$xExistence theories for optimal control problems involving partial differential equations [MSC 2020]$3VANC021643$2MF 606 $a93B28$xOperator-theoretic methods [MSC 2020]$3VANC021644$2MF 610 $aBoundary and point control problems$9KW:K 610 $aEquation$9KW:K 610 $aFree boundaries$9KW:K 610 $aFunction$9KW:K 610 $aGenerator$9KW:K 610 $aMaximal regularity$9KW:K 610 $aNonautonomous Cauchy problems$9KW:K 610 $aOrdinary differential equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSemigroups$9KW:K 610 $aTheorem$9KW:K 620 $dBerlin$3VANL000066 702 1$aDa Prato$bGiuseppe$3VANV043232 702 1$aIannelli$bMimmo$f1946- $3VANV043420 702 1$aNagel$bRainer$3VANV043421 702 1$aPiazzera$bSusanna$3VANV043422 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/b100449$zhttps://doi.org/10.1007/b100449 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN0054942 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 34-XX 1015 $e08 6741 I 20061030 996 $aFunctional analytic methods for evolution equations$9752167 997 $aUNICAMPANIA