LEADER 01607cam2-2200457---450- 001 990001970220203316 005 20161124110344.0 035 $a000197022 035 $aUSA01000197022 035 $a(ALEPH)000197022USA01 035 $a000197022 100 $a20040831d1980----km-y0itay50------ba 101 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $a<<2>>: Morfosintassi$fPavao Tekav?i? 205 $aNuova ed 210 $aBologna$cIl Mulino$d1980 215 $a525 p.$d22 cm 225 2 $a<> nuova scienza$iSerie di linguistica e critica letteraria 410 0$10010030224$12001$a<> nuova scienza. Serie di linguistica e critica letteraria 461 0$1001000197020$12001$aGrammatica storica dell'italiano 606 0 $aLingua italiana$xGrammatica$xStoria$2BNCF 676 $a455 700 1$aTEKAVCIC,$bPavao$0188216 801 0$aIT$bsalbc$gISBD 912 $a990001970220203316 951 $aIV.2. Coll. 24/ 13/2(V B Coll. 52/4 2)$b90534 L.M.$cIV.2. Coll.$d00048559 951 $aIV.2. Coll. 24/ 13/2a(COLL BF 11 II)$b19154 E.C.$cIV.2. Coll.$d00163212 959 $aBK 969 $aUMA 979 $aSIAV6$b10$c20040831$lUSA01$h1751 979 $aCOPAT5$b90$c20060314$lUSA01$h0942 979 $aANNAMARIA$b90$c20080407$lUSA01$h0919 979 $aANNAMARIA$b90$c20080407$lUSA01$h0927 979 $aANNAMARIA$b90$c20080407$lUSA01$h0957 979 $aANNAMARIA$b90$c20080508$lUSA01$h0830 979 $aANNAMARIA$b90$c20090507$lUSA01$h0824 979 $aANNAMARIA$b90$c20161124$lUSA01$h1103 996 $aMorfosintassi$9149841 997 $aUNISA LEADER 03598nam 22006492 450 001 9910465381403321 005 20151005020623.0 010 $a1-107-23583-9 010 $a1-139-61618-8 010 $a1-139-62548-9 010 $a1-139-61060-0 010 $a1-139-60893-2 010 $a1-139-13508-2 010 $a1-139-61246-8 010 $a1-299-25771-2 035 $a(CKB)2560000000098642 035 $a(EBL)1099890 035 $a(OCoLC)827947115 035 $a(SSID)ssj0000833623 035 $a(PQKBManifestationID)11449185 035 $a(PQKBTitleCode)TC0000833623 035 $a(PQKBWorkID)10936473 035 $a(PQKB)10304236 035 $a(UkCbUP)CR9781139135085 035 $a(MiAaPQ)EBC1099890 035 $a(Au-PeEL)EBL1099890 035 $a(CaPaEBR)ebr10659313 035 $a(CaONFJC)MIL457021 035 $a(EXLCZ)992560000000098642 100 $a20110729d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMeasurement uncertainty and probability /$fRobin Willink$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xvii, 276 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-02193-6 311 $a1-139-62176-9 320 $aIncludes bibliographical references and index. 327 $aFoundational ideas in measurement -- Components of error or uncertainty -- Foundational ideas in probability and statistics -- The randomization of systematic errors -- Beyond the standard confidence interval -- Final preparation -- Evaluation using the linear approximation -- Evaluation without the linear approximation -- Uncertainty information fit for purpose -- Measurement of vectors and functions -- Why take part in a measurement comparison? -- Other philosophies -- An assessment of objective Bayesian methods -- Guide to the expression of uncertainty in measurement -- Measurement near a limit, an insoluble problem? 330 $aA measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science. 517 3 $aMeasurement Uncertainty & Probability 606 $aMeasurement uncertainty (Statistics) 606 $aProbabilities 615 0$aMeasurement uncertainty (Statistics) 615 0$aProbabilities. 676 $a519.2 700 $aWillink$b Robin$f1961-$01054351 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910465381403321 996 $aMeasurement uncertainty and probability$92486863 997 $aUNINA