LEADER 01022nam--2200349---450- 001 990001740160203316 005 20060203123800.0 035 $a000174016 035 $aUSA01000174016 035 $a(ALEPH)000174016USA01 035 $a000174016 100 $a20040609d1959----km-y0itay0103----ba 101 $aIT 102 $aita 105 $a||||||||001yy 200 1 $aCavalli e cavalieri nella pittura italiana$fCaterina Lelj 210 $aMilano$cConfalonieri$d1959 215 $a84 p.$cill.$d33 cm 225 2 $aColl. di pittura italiana 410 0$12001$aColl. di pittura italiana 454 1$12001 461 1$1001-------$12001 700 1$aLELJ,$bCaterina$0562788 801 0$aIT$bsalbc$gISBD 912 $a990001740160203316 951 $aXII.2. Coll.24/ 6(VII F 39)$b20919 L.M.$cVII F 959 $aBK 969 $aUMA 979 $aSIAV2$b10$c20040609$lUSA01$h1629 979 $aCOPAT6$b90$c20060203$lUSA01$h1238 996 $aCavalli e cavalieri nella pittura italiana$9946643 997 $aUNISA LEADER 03201nam 22006375 450 001 9910299980303321 005 20220407181814.0 010 $a3-319-06447-9 024 7 $a10.1007/978-3-319-06447-5 035 $a(CKB)3710000000129301 035 $a(EBL)1782937 035 $a(SSID)ssj0001277557 035 $a(PQKBManifestationID)11757836 035 $a(PQKBTitleCode)TC0001277557 035 $a(PQKBWorkID)11278721 035 $a(PQKB)10974468 035 $a(MiAaPQ)EBC1782937 035 $a(DE-He213)978-3-319-06447-5 035 $z(PPN)258868635 035 $a(PPN)179763628 035 $a(EXLCZ)993710000000129301 100 $a20140613d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRegularity of difference equations on Banach spaces /$fby Ravi P. Agarwal, Claudio Cuevas, Carlos Lizama 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (218 p.) 300 $aDescription based upon print version of record. 311 $a1-322-13543-6 311 $a3-319-06446-0 320 $aIncludes bibliographical references and index. 327 $a1. Discrete Semi groups and Cosine Operators -- 2. Maximal regularity and the method of Fourier Multipliers -- 3. First Order Linear Difference Equations -- 4. First Order Semi linear Difference Equations -- 5. Second Order Linear Difference Equations -- 6. Second Order Semi linear -- 7. Applications. 330 $aThis work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis. 606 $aDifference equations 606 $aFunctional equations 606 $aDiscrete mathematics 606 $aDifference and Functional Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12031 606 $aDiscrete Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29000 615 0$aDifference equations. 615 0$aFunctional equations. 615 0$aDiscrete mathematics. 615 14$aDifference and Functional Equations. 615 24$aDiscrete Mathematics. 676 $a515.7 676 $a515.732 700 $aAgarwal$b Ravi P$4aut$4http://id.loc.gov/vocabulary/relators/aut$041786 702 $aCuevas$b Claudio$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLizama$b Carlos$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299980303321 996 $aRegularity of Difference Equations on Banach Spaces$92529251 997 $aUNINA