LEADER 01052nam0-22003731i-450- 001 990006310580403321 005 20131129190524.0 035 $a000631058 035 $aFED01000631058 035 $a(Aleph)000631058FED01 035 $a000631058 100 $a20000112d1983----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>centri storici$easpetti giuridici$fGianfranco D'Alessio$gprefazione di Alberto Predieri 210 $aMilano$cGiuffrè$d1983 215 $aXII, 506 p.$d24 cm 225 1 $aTerritorio e casa$i[Volumi]$v5 676 $a307.333 16 676 $a628$v12 rid.$zita 700 1$aD'Alessio,$bGianfranco$035763 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006310580403321 952 $aURB.LE B 462$b13314$fFARBC 952 $aVI D 431$b4075$fDDA 952 $aCOLLEZ. 352A (5)$b114984$fFGBC 952 $aXXVIII 352$b388$fDDCIC 959 $aDDCIC 959 $aFARBC 959 $aDDA 996 $aCentri storici$9641545 997 $aUNINA LEADER 00938nam0-22002771i-450 001 990001710640403321 005 20170503102218.0 035 $a000171064 035 $aFED01000171064 035 $a(Aleph)000171064FED01 035 $a000171064 100 $a20030910d1881----km-y0itay50------ba 101 0 $aita 200 1 $aRelazione sul quesito secondo del IX Congresso degli allevatori di bestiame della Regione veneta in Mestre nei giorni6-8 ott. 1881$fNiccolo Mantica. 210 $aUdine$cTip. Seitz$d1881 215 $a181 p.$d25 cm 610 0 $aZootecnica 676 $a636 700 1$aMantica,$bNiccolo$073766 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001710640403321 952 $a60 636 B 21$b4866$fFAGBC 959 $aFAGBC 996 $aRelazione sul quesito secondo del IX Congresso degli allevatori di bestiame della Regione veneta in Mestre nei giorni6-8 ott. 1881$9359483 997 $aUNINA LEADER 01163nam--2200409---450- 001 990000542920203316 005 20071129090857.0 035 $a0054292 035 $aUSA010054292 035 $a(ALEPH)000054292USA01 035 $a0054292 100 $a20010704d1992----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aParliamone$fGiovanni Antonio Colangelo 210 $aSalerno$cEdisud$dcopyr. 1992 215 $a157 p.$d22 cm 410 $12001 676 $a920.045745 700 1$aCOLANGELO,$bGiovanni Antonio$0205992 801 0$aIT$bsalbc$gISBD 912 $a990000542920203316 951 $aXV.1.A. 300(V G 236)$b123103 LM$cV G 951 $aIV 5 COL$b4734 DBC$cIV 5 959 $aBK 969 $aLOCALE 969 $aDBC 979 $aPATTY$b90$c20010704$lUSA01$h1432 979 $aPATTY$b90$c20011116$lUSA01$h0930 979 $c20020403$lUSA01$h1703 979 $aPATRY$b90$c20040406$lUSA01$h1638 979 $aCOPAT1$b90$c20051115$lUSA01$h1014 979 $aDBC$b90$c20071129$lUSA01$h0908 979 $aDBC$b90$c20071129$lUSA01$h0908 996 $aParliamone$9886012 997 $aUNISA LEADER 01358nam0 2200325 i 450 001 SUN0123382 005 20200219100434.216 010 $d0.00 017 70$2N$a978-3-319-27909-1 100 $a20190919d2017 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Louis Boutet de Monvel, selected works$fVictor W. Guillemin, Johannes Sjöstrand editors 205 $aCham : Birkhäuser, 2017 210 $avii$d852 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0102619$12001 $a*Contemporary mathematicians$1210 $aBoston$cBirkhäuser$d1988-. 606 $a01A75$xCollected or selected works; reprintings or translations of classics [MSC 2020]$2MF$3SUNC021493 620 $aCH$dCham$3SUNL001889 700 1$aBoutet De Monvel$b, Louis$3SUNV049778$060656 702 1$aGuillemin$b, Victor W.$3SUNV040077 702 1$aSjöstrand$b, Johannes$3SUNV094789 712 $aBirkhäuser$3SUNV000319$4650 801 $aIT$bSOL$c20210503$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-27909-1 912 $aSUN0123382 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0753 $e08eMF753 20190919 996 $aLouis Boutet de Monvel, selected works$91560454 997 $aUNICAMPANIA LEADER 00832nam--2200313---450 001 990001667640203316 005 20230227083603.0 035 $a000166764 035 $aUSA01000166764 035 $a(ALEPH)000166764USA01 035 $a000166764 100 $a20040517d1954----km-y0itay0103----ba 101 0 $aeng 102 $aGB 105 $a||||||||001yy 200 1 $aJapanese masters of the colour print$fJ. Hillier 210 $aLondon$cPhaidon Press$d1954 215 $a140 p.$cill.$d31 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 700 1$aHILLIER,$bJ.$0561847 801 0$aIT$bsalbc$gISBD 912 $a990001667640203316 951 $aXII.2.B. 572(VII F 54)$b4006 L.M.$cVII F 959 $aBK 969 $aUMA 996 $aJapanese masters of the colour print$9941967 997 $aUNISA LEADER 04954oam 2200517 450 001 9910806814403321 005 20190911112729.0 010 $a981-4452-65-3 035 $a(OCoLC)860388715 035 $a(MiFhGG)GVRL8RGK 035 $a(EXLCZ)992550000001160075 100 $a20140501h20142014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis for diffusion processes on Riemannian manifolds /$fFeng-Yu Wang, Beijing Normal University, China & Swansea University, UK 210 1$aNew Jersey :$cWorld Scientific,$d[2014] 210 4$d?2014 215 $a1 online resource (xii, 379 pages) $cillustrations 225 1 $aAdvanced Series on Statistical Science & Applied Probability ;$vVolume 18 300 $aDescription based upon print version of record. 311 $a981-4452-64-5 311 $a1-306-12029-2 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; 1. Preliminaries; 1.1 Riemannian manifold; 1.1.1 Differentiable manifold; 1.1.2 Riemannian manifold; 1.1.3 Some formulae and comparison results; 1.2 Riemannian manifold with boundary; 1.3 Coupling and applications; 1.3.1 Transport problem and Wasserstein distance; 1.3.2 Optimal coupling and optimal map; 1.3.3 Coupling for stochastic processes; 1.3.4 Coupling by change of measure; 1.4 Harnack inequalities and applications; 1.4.1 Harnack inequality; 1.4.2 Shift Harnack inequality; 1.5 Harnack inequality and derivative estimate 327 $a1.5.1 Harnack inequality and entropy-gradient estimate1.5.2 Harnack inequality and L2-gradient estimate; 1.5.3 Harnack inequalities and gradient-gradient estimates; 1.6 Functional inequalities and applications; 1.6.1 Poincar e type inequality and essential spectrum; 1.6.2 Exponential decay in the tail norm; 1.6.3 The F-Sobolev inequality; 1.6.4 Weak Poincare inequality; 1.6.5 Equivalence of irreducibility and weak Poincare inequality; 2. Diffusion Processes on Riemannian Manifolds without Boundary; 2.1 Brownian motion with drift; 2.2 Formulae for Pt and RicZ 327 $a2.3 Equivalent semigroup inequalities for curvature lower bound2.4 Applications of equivalent semigroup inequalities; 2.5 Transportation-cost inequality; 2.5.1 From super Poincare to weighted log-Sobolev inequalities; 2.5.2 From log-Sobolev to transportation-cost inequalities; 2.5.3 From super Poincare to transportation-cost inequalities; 2.5.4 Super Poincare inequality by perturbations; 2.6 Log-Sobolev inequality: Different roles of Ric and Hess; 2.6.1 Exponential estimate and concentration of; 2.6.2 Harnack inequality and the log-Sobolev inequality 327 $a2.6.3 Hypercontractivity and ultracontractivity2.7 Curvature-dimension condition and applications; 2.7.1 Gradient and Harnack inequalities; 2.7.2 HWI inequalities; 2.8 Intrinsic ultracontractivity on non-compact manifolds; 2.8.1 The intrinsic super Poincare inequality; 2.8.2 Curvature conditions for intrinsic ultracontractivity; 2.8.3 Some examples; 3. Reflecting Diffusion Processes on Manifolds with Boundary; 3.1 Kolmogorov equations and the Neumann problem; 3.2 Formulae for Pt, RicZ and I; 3.2.1 Formula for Pt; 3.2.2 Formulae for RicZ and I; 3.2.3 Gradient estimates 327 $a3.3 Equivalent semigroup inequalities for curvature conditionand lower bound of I3.3.1 Equivalent statements for lower bounds of RicZ and I; 3.3.2 Equivalent inequalities for curvature-dimension condition and lower bound of I; 3.4 Harnack inequalities for SDEs on Rd and extension to nonconvex manifolds; 3.4.1 Construction of the coupling; 3.4.2 Harnack inequality on Rd; 3.4.3 Extension to manifolds with convex boundary; 3.4.4 Neumann semigroup on non-convex manifolds; 3.5 Functional inequalities; 3.5.1 Estimates for inequality constants on compact manifolds 327 $a3.5.2 A counterexample for Bakry-Emery criterion 330 $aStochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary. 410 0$aAdvanced series on statistical science & applied probability ;$vv. 18. 606 $aRiemannian manifolds 606 $aDiffusion processes 615 0$aRiemannian manifolds. 615 0$aDiffusion processes. 676 $a516.373 700 $aWang$b Feng-Yu$0480857 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910806814403321 996 $aAnalysis for diffusion processes on Riemannian manifolds$9255410 997 $aUNINA