LEADER 01180nam--2200373---450- 001 990001512790203316 005 20040318091555.0 035 $a000151279 035 $aUSA01000151279 035 $a(ALEPH)000151279USA01 035 $a000151279 100 $a20040318d1917----km-y0itay0103----ba 101 $aspa 102 $aES 105 $a||||||||001yy 200 1 $aCada qual lo que le toca ; y La vina de Nabot$fFrancisco de Rojas Zorrilla$gpublicadas por Americo Castro 210 $aMadrid$c[Centro de estudios historicos]$d1917 215 $a272 p.$d25 cm 225 2 $aTeatro antiguo espanol$etextos y estudios$v2 410 0$12001$aTeatro antiguo espanol$etextos y estudios$v2 454 1$12001 461 1$1001-------$12001 676 $a861.3 700 1$aROJAS ZORRILLA,$bFrancisco : de$0445846 702 1$aCASTRO,$bAmerico 801 0$aIT$bsalbc$gISBD 912 $a990001512790203316 951 $aII sp B 5 22/2$b453 L.M.$cII sp 959 $aBK 969 $aUMA 979 $aSIAV6$b10$c20040318$lUSA01$h0915 979 $aPATRY$b90$c20040406$lUSA01$h1745 996 $aCada qual lo que le toca ; y La vina de Nabot$9935443 997 $aUNISA LEADER 01075nam2-2200349---450- 001 990003300300203316 005 20090806091853.0 035 $a000330030 035 $aUSA01000330030 035 $a(ALEPH)000330030USA01 035 $a000330030 100 $a20090806d1978----km-y0itay50------ba 101 $aeng 102 $aUS 105 $a||||||||001yy 200 1 $a<> Classical dynamical systems$fWalter Thirring$gtranslated by Evans M. Harrell 210 $aNew York [etc.]$cSpringer$dcopyr. 1978 215 $aXII, 258 p.$cill.$d23 cm 461 1$1001000330029$12001$a<> course in mathematical physics 606 0 $aFisica matematica 676 $a530.15 700 1$aTHIRRING,$bWalter$061741 702 1$aHARRELL,$bEvans M. 801 0$aIT$bsalbc$gISBD 912 $a990003300300203316 951 $a530.15 THI/1 A$b7726/CBS$c530.15$d00325874 959 $aBK 969 $aSCI 979 $aRSIAV7$b90$c20090806$lUSA01$h0912 979 $aRSIAV7$b90$c20090806$lUSA01$h0918 996 $aClassical Dynamical Systems$9339883 997 $aUNISA LEADER 05111nam 22007215 450 001 9910338254903321 005 20250905110614.0 010 $a3-030-03868-8 024 7 $a10.1007/978-3-030-03868-7 035 $a(CKB)4100000007810218 035 $a(DE-He213)978-3-030-03868-7 035 $a(MiAaPQ)EBC5926908 035 $a(PPN)235233943 035 $a(EXLCZ)994100000007810218 100 $a20190316d2019 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBodies of Constant Width $eAn Introduction to Convex Geometry with Applications /$fby Horst Martini, Luis Montejano, Déborah Oliveros 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2019. 215 $a1 online resource (XI, 486 p. 163 illus., 32 illus. in color.) 311 08$a3-030-03866-1 327 $aIntroduction -- Convex Geometry -- Basic Properties of Bodies of Constant Width -- Figures of Constant Width -- Systems of Lines in the Plane -- Spindle Convexity -- Complete and Reduced Convex Bodies -- Examples and Constructions -- Sections of Bodies of Constant Width -- Bodies of Constant Width in Mikowski Spaces -- Bodies of Constant Width in Differential Geometry -- Mixed Volumes -- Bodies of Constant Width in Analysis -- Geometric Inequalities -- Bodies of Constant Width in Discrete Geometry -- Bodies of Constant Width in Topology -- Concepts Related to Constant Width -- Bodies of Constant Width in Art, Design, and Engineering. 330 $aThis is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry. 606 $aConvex geometry 606 $aDiscrete geometry 606 $aGeometry, Differential 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aCombinatorial analysis 606 $aTopology 606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aGeometry, Differential. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aCombinatorial analysis. 615 0$aTopology. 615 14$aConvex and Discrete Geometry. 615 24$aDifferential Geometry. 615 24$aAnalysis. 615 24$aCombinatorics. 615 24$aTopology. 676 $a516.08 676 $a516.08 700 $aMartini$b Horst$4aut$4http://id.loc.gov/vocabulary/relators/aut$060948 702 $aMontejano$b Luis$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aOliveros$b Déborah$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910338254903321 996 $aBodies of Constant Width$92517368 997 $aUNINA