LEADER 01004nam--2200361---450- 001 990001453700203316 005 20050301134814.0 035 $a000145370 035 $aUSA01000145370 035 $a(ALEPH)000145370USA01 035 $a000145370 100 $a20040225d1974----km-y0itay0103----ba 101 0 $aeng 102 $aUS 105 $aa|||||||001yy 200 1 $aCities in the suburbs$fHumphery Carver 210 $aToronto$cToronto University press$d1974 215 $aVII, 120 p.$cill.$d24 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 606 0 $aCittą$xStoria 700 1$aCARVER,$bHumphrey$032875 801 0$aIT$bsalbc$gISBD 912 $a990001453700203316 951 $aIII.1. 818 (I C 328)$b78355 L.M.$cI C 959 $aBK 969 $aUMA 979 $aSIAV4$b10$c20040225$lUSA01$h1442 979 $aPATRY$b90$c20040406$lUSA01$h1742 979 $aCOPAT4$b90$c20050301$lUSA01$h1348 996 $aCities in the suburbs$9314240 997 $aUNISA LEADER 01080cam2 22002771 450 001 SOBE00067712 005 20211001063818.0 100 $a20210930d1965 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $a<<3: >>Dal Rosseau al Wolf$fHermann Leser 210 $aFirenze$cLa nuova Italia$d1965 215 $a595 p.$d20 cm 225 2 $aEducatori antichi e moderni$v195 410 1$1001LAEC00015153$12001 $a*Educatori antichi e moderni$v195 461 1$1001E600200021086$12001 $a<>problema pedagogico / Ermanno Leser 700 1$aLeser$b, Hermann$3A600200038087$4070$0161984 801 0$aIT$bUNISOB$c20211001$gRICA 850 $aUNISOB 852 $aUNISOB$jFondo|Frauenfelder$m173509 912 $aSOBE00067712 940 $aM 102 Monografia moderna SBN 941 $aM 957 $aFondo|Frauenfelder$b000020$gSI$d173509$n20201118$hFrauenfelder$rdono$1bethb$2UNISOB$3UNISOB$420210930103047.0$520211001063818.0$6bethb$fPer le modalitą di consultazione vedi homepage della Biblioteca link Fondi 996 $aDal Rosseau al Wolf$91872555 997 $aUNISOB LEADER 04334nam 2200697 450 001 9910822673403321 005 20230607232411.0 010 $a3-11-094091-4 024 7 $a10.1515/9783110940916 035 $a(CKB)3390000000062276 035 $a(SSID)ssj0001406656 035 $a(PQKBManifestationID)12546440 035 $a(PQKBTitleCode)TC0001406656 035 $a(PQKBWorkID)11401823 035 $a(PQKB)10248281 035 $a(MiAaPQ)EBC3049398 035 $a(DE-B1597)57190 035 $a(OCoLC)1013963414 035 $a(OCoLC)900796448 035 $a(DE-B1597)9783110940916 035 $a(Au-PeEL)EBL3049398 035 $a(CaPaEBR)ebr11008735 035 $a(CaONFJC)MIL807276 035 $a(OCoLC)922950559 035 $a(EXLCZ)993390000000062276 100 $a20011205d2001 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCoefficient inverse problems for parabolic type equations and their application /$fP.G. Danilaev 205 $aReprint 2014 210 1$aUtrecht ;$aBoston :$cVSP,$d2001. 215 $a1 online resource (125 pages) $cillustrations 225 1 $aInverse and ill-posed problems series,$x1381-4524 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-11-036401-8 311 $a90-6764-348-3 320 $aIncludes bibliographical references. 327 $tFront matter --$tContents --$tPreface --$tChapter 1. On the ill-posedness of coefficient inverse problems and the general approach to the study of them --$tChapter 2. Determining the coefficient of the lowest term of equation --$tChapter 3. Determining of the coefficient for the leading terms of equation --$tChapter 4. Modification of the method of determining the coefficient of the leading terms in an equation --$tChapter 5. Generalizations of the developed algorithm for solving coefficient inversion problems --$tChapter 6. On applications of coefficient inverse problems in underground fluid dynamics --$tSummary --$tBibliography 330 $aAs a rule, many practical problems are studied in a situation when the input data are incomplete. For example, this is the case for a parabolic partial differential equation describing the non-stationary physical process of heat and mass transfer if it contains the unknown thermal conductivity coefficient. Such situations arising in physical problems motivated the appearance of the present work. In this monograph the author considers numerical solutions of the quasi-inversion problems, to which the solution of the original coefficient inverse problems are reduced. Underground fluid dynamics is taken as a field of practical use of coefficient inverse problems. The significance of these problems for this application domain consists in the possibility to determine the physical fields of parameters that characterize the filtration properties of porous media (oil strata). This provides the possibility of predicting the conditions of oil-field development and the effects of the exploitation. The research carried out by the author showed that the quasi-inversion method can be applied also for solution of "interior coefficient inverse problems" by reducing them to the problem of continuation of a solution to a parabolic equation. This reduction is based on the results of the proofs of the uniqueness theorems for solutions of the corresponding coefficient inverse problems. 410 0$aInverse and ill-posed problems series. 606 $aDifferential equations, Parabolic$xNumerical solutions 606 $aInverse problems (Differential equations)$xNumerical solutions 610 $aCoefficient Inverse Problems. 610 $aNumerical Solutions. 610 $aParabolic Equations. 610 $aQuasi-inversion Problems. 610 $aUnderground Fluid Dynamics. 615 0$aDifferential equations, Parabolic$xNumerical solutions. 615 0$aInverse problems (Differential equations)$xNumerical solutions. 676 $a515/.353 700 $aDanilaev$b P. G.$0725467 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822673403321 996 $aCoefficient inverse problems for parabolic type equations and their application$91415478 997 $aUNINA