LEADER 01258nam--2200397---450- 001 990001410080203316 005 20050418135946.0 035 $a000141008 035 $aUSA01000141008 035 $a(ALEPH)000141008USA01 035 $a000141008 100 $a20040210d1972----km-y0itay0103----ba 101 0 $aita 102 $aIT 105 $aa|||||||001yy 200 1 $a1860$ecrollo di Napoli capitale$fDomenico Capecelatro Gaudioso$gcon una lettera di Giuseppe Porcaro 210 $aRoma$cEdizioni dell'Ateneo$d1972 215 $a236 p.$cill.$d24 cm 225 2 $aCultura e storia del nostro paese$v3 410 0$12001$aCultura e storia del nostro paese$v3 454 1$12001 461 1$1001-------$12001 606 0 $aRegno delle due Sicilie$xStoria$z1856-1860 676 $a945.7 700 1$aCAPECELATRO GAUDIOSO,$bDomenico$0192359 801 0$aIT$bsalbc$gISBD 912 $a990001410080203316 951 $aXV.1.C. 213(III E coll.126/3)$b90349 L.M.$cIII E coll. 959 $aBK 969 $aUMA 979 $aSIAV3$b10$c20040210$lUSA01$h1604 979 $aSIAV3$b10$c20040210$lUSA01$h1605 979 $aPATRY$b90$c20040406$lUSA01$h1739 979 $aCOPAT5$b90$c20050418$lUSA01$h1359 996 $a1860$9570818 997 $aUNISA LEADER 02311nam 2200589 450 001 9910826124603321 005 20180731043847.0 010 $a0-8218-7692-9 010 $a0-8218-5437-2 035 $a(CKB)3240000000069631 035 $a(EBL)3113072 035 $a(SSID)ssj0000629222 035 $a(PQKBManifestationID)11392781 035 $a(PQKBTitleCode)TC0000629222 035 $a(PQKBWorkID)10718042 035 $a(PQKB)11721845 035 $a(MiAaPQ)EBC3113072 035 $a(RPAM)1036187 035 $a(PPN)197104274 035 $a(EXLCZ)993240000000069631 100 $a19891002h19891989 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAccessible categories $ethe foundations of categorical model theory /$fMichael Makkai, Robert Pare? 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1989] 210 4$dİ1989 215 $a1 online resource (186 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v104 300 $aDescription based upon print version of record. 311 $a0-8218-5111-X 320 $aIncludes bibliographical references (pages 165-166) and index. 327 $a""A?5.5. The powerful image of an accessible functor""""Chapter 6: Limits and Colimits in accessible categories""; ""A?6.1. Completeness and cocompleteness in accessible categories""; ""A?6.2. Models of a sketch in an accessible category""; ""A?6.3. Detectability of colimits""; ""A?6.4. Completing an accessible category""; ""References""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""O""; ""P""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Glossary of notation"" 410 0$aContemporary mathematics (American Mathematical Society) ;$v104. 606 $aModel theory 606 $aCategories (Mathematics) 606 $aToposes 615 0$aModel theory. 615 0$aCategories (Mathematics) 615 0$aToposes. 676 $a511.3 700 $aMakkai$b Miha?ly$f1939-$055822 702 $aPare?$b Robert$f1944- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826124603321 996 $aAccessible categories$9342184 997 $aUNINA