LEADER 03443nam--2200865---450- 001 990001159190203316 005 20030725124126.0 010 $a3-540-43079-2 035 $a000115919 035 $aUSA01000115919 035 $a(ALEPH)000115919USA01 035 $a000115919 100 $a20021217d2001----km-y0itay0103----ba 101 $aENG 105 $a||||||||001yy 200 1 $aDigital and image geometry$eAdvanced lectures$fGilles Bertrand... (Ed.) 210 $aBerlin$cSpringer-Verlag$dcopyr.2001 215 $aVIII,453 p.$cill.$d20 cm 225 2 $aLecture notes in computer science$v2243 702 $aBertrand$bGilles 801 0$aIT$bCBS$gISBD 912 $a990001159190203316 951 $a001 LNCS (2243)$b0026758 CBS$c001$d00112142 959 $aBK 969 $aSCI 979 $aDIGIUSEPPE$b90$c20021217$lUSA01$h1200 979 $aDIGIUSEPPE$b90$c20030310$lUSA01$h1222 979 $aDIGIUSEPPE$b90$c20030530$lUSA01$h1247 979 $aDIGIUSEPPE$b90$c20030603$lUSA01$h1655 979 $aDIGIUSEPPE$b90$c20030603$lUSA01$h1657 979 $aDIGIUSEPPE$b90$c20030610$lUSA01$h1536 979 $aDIGIUSEPPE$b90$c20030610$lUSA01$h1541 979 $aDIGIUSEPPE$b90$c20030610$lUSA01$h1543 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1156 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1159 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1205 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1316 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1332 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1339 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1345 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1347 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1347 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1354 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1358 979 $aDIGIUSEPPE$b90$c20030612$lUSA01$h1401 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1126 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1131 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1135 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1149 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1200 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1210 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1226 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1232 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1237 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1244 979 $aDIGIUSEPPE$b90$c20030613$lUSA01$h1250 979 $aDIGIUSEPPE$b90$c20030624$lUSA01$h1614 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1138 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1144 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1151 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1319 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1326 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1335 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1340 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1346 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1357 979 $aDIGIUSEPPE$b90$c20030625$lUSA01$h1409 979 $aDIGIUSEPPE$b90$c20030627$lUSA01$h1347 979 $aDIGIUSEPPE$b90$c20030627$lUSA01$h1351 979 $aDIGIUSEPPE$b90$c20030627$lUSA01$h1354 979 $aDIGIUSEPPE$b90$c20030627$lUSA01$h1359 979 $aDIGIUSEPPE$b90$c20030725$lUSA01$h1241 979 $aPATRY$b90$c20040406$lUSA01$h1721 996 $aDigital and image geometry$9983715 997 $aUNISA LEADER 06541nam 22007815 450 001 9910437872403321 005 20251030140406.0 010 $a1-283-86508-4 010 $a1-4614-5131-0 024 7 $a10.1007/978-1-4614-5131-0 035 $a(CKB)2670000000299666 035 $a(EBL)1030663 035 $a(OCoLC)823384959 035 $a(SSID)ssj0000811539 035 $a(PQKBManifestationID)11956508 035 $a(PQKBTitleCode)TC0000811539 035 $a(PQKBWorkID)10850349 035 $a(PQKB)10804264 035 $a(DE-He213)978-1-4614-5131-0 035 $a(MiAaPQ)EBC1030663 035 $a(PPN)168302128 035 $a(EXLCZ)992670000000299666 100 $a20121205d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOptimization, Simulation, and Control /$fedited by Altannar Chinchuluun, Panos M. Pardalos, Rentsen Enkhbat, Efstratios N. Pistikopoulos 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2013. 215 $a1 online resource (350 p.) 225 1 $aSpringer Optimization and Its Applications,$x1931-6836 ;$v76 300 $aDescription based upon print version of record. 311 08$a1-4899-8781-9 311 08$a1-4614-5130-2 320 $aIncludes bibliographical references. 327 $aOptimization, Simulation,and Control; Preface; Contents; On the Composition of Convex Envelopes for Quadrilinear Terms; 1 Introduction; 2 Motivation and Literature; 3 The Composition of Convex Envelopes; 3.1 Alphabets, Languages, and Grammars; 3.2 Mathematical Expression Language: Syntax; 3.3 Mathematical Expression Language: Semantics; 3.3.1 Exact Semantics; 3.3.2 Relaxed Semantics; 3.4 Comparison of Relaxed Semantics; 4 Computational Results; 5 Conclusion; References; An Oriented Distance Function Application to Gap Functions for Vector Variational Inequalities; 1 Introduction 327 $a2 Mathematical preliminaries3 Gap functions for vector variational inequalities; 4 Extension to set-valued problems; 4.1 Vector variational inequalities with set-valued mappings; 4.2 Vector variational-like inequalities with set-valued mappings; 4.3 Generalized vector variational-like inequalities with set-valued mappings; References; Optimal Inscribing of Two Balls into Polyhedral Set; 1 Introduction; 2 Optimal Inscribing of Two Balls; 3 Continuity and Differentiability of Auxiliary Functions; 4 Numerical Examples; References 327 $aMathematical Programs with Equilibrium Constraints: A Brief Survey of Methods and Optimality Conditions1 Variational Inequality Problem; 1.1 Existence and Convexity of the Solution Set of VIP; 1.2 Relationship to Other Problems; 1.3 Traffic Equilibrium; 2 Mathematical Programs with Equilibrium Constraints; 3 Methods for Solving the MPEC; 3.1 Penalty Techniques; 3.2 Nondifferential Optimization; 3.3 Smoothing Methods; 4 Optimality Conditions for MPEC; References; Linear Programming with Interval Data: A Two-Level Programming Approach; 1 Introduction; 2 Problem Formulation 327 $a3 One-Level Transformation3.1 Lower Bound; 3.2 Upper Bound; 3.3 Special Case; 4 An Example; 5 Conclusion; References; Quantifying Retardation in Simulation Based Optimization; 1 Introduction; 2 One-Shot Optimization and Problem Characteristics; 3 The Newton Scenario for Separable Adjoints; 4 Jacobi Method on an Elliptic Problem; 5 Multigrid Method; 6 Summary and Conclusion; References; Evolutionary Algorithm for Generalized Nash Equilibrium Problems; 1 Introduction; 2 Generalized Nash Equilibrium Problem; 3 Equivalent Reformulations; 4 Evolutionary Algorithm; 5 Numerical Experiments 327 $a6 ConclusionReferences; Scalar and Vector Optimization with Composed Objective Functions and Constraints; 1 Introduction; 2 Notations and Preliminaries; 3 Some Dual Optimization Problems; 3.1 The Scalar Optimization Problem (PS); 3.2 The Scalar Optimization Problem (PS?); 3.3 The Vector Optimization Problem (PV); 3.4 The Vector Optimization Problem (PVm); References; A PTAS for Weak Minimum Routing Cost Connected Dominating Set of Unit Disk Graph; 1 Introduction; 2 Problem Transformation; 3 A Constant Approximation; 4 A PTAS; References 327 $aPower Control in Wireless Ad Hoc Networks: Stability and Convergence Under Uncertainties 330 $aOptimization, simulation and control are very powerful tools in engineering and mathematics, and play an increasingly important role. Because of their various real-world applications in industries such as finance, economics, and telecommunications, research in these fields is accelerating at a rapid pace, and there have been major algorithmic and theoretical developments in these fields in the last decade. This volume brings together the latest developments in these areas of research and presents applications of these results to a wide range of real-world problems. The book is composed of invited contributions by experts from around the world who work to develop and apply new optimization, simulation, and control techniques either at a theoretical level or in practice. Some key topics presented include: equilibrium problems, multi-objective optimization, variational inequalities, stochastic processes, numerical analysis, optimization in signal processing, and various other interdisciplinary applications. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization, simulation and control can be applied. 410 0$aSpringer Optimization and Its Applications,$x1931-6836 ;$v76 606 $aMathematical optimization 606 $aSystem theory 606 $aControl theory 606 $aMathematical models 606 $aOptimization 606 $aSystems Theory, Control 606 $aMathematical Modeling and Industrial Mathematics 615 0$aMathematical optimization. 615 0$aSystem theory. 615 0$aControl theory. 615 0$aMathematical models. 615 14$aOptimization. 615 24$aSystems Theory, Control. 615 24$aMathematical Modeling and Industrial Mathematics. 676 $a519.6 701 $aChinchuluun$b Altannar$0507428 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437872403321 996 $aOptimization, simulation, and control$94195224 997 $aUNINA