LEADER 01111nam--2200385---450- 001 990001142960203316 005 20060309140624.0 010 $a88-8176-281-1 035 $a000114296 035 $aUSA01000114296 035 $a(ALEPH)000114296USA01 035 $a000114296 100 $a20030415d2002----km-y0enga50------ba 101 0 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $aAsimmetrie del due$edi alcuni motivi scapigliati$fTommaso Pomilio 210 $aLecce$cManni$d2002 215 $a187 p.$d20 cm 225 2 $aAntifone$v10 410 0$12001$aAntifone$v10 606 0 $aScapigliatura$yMilano 676 $a850.9008 700 1$aPOMILIO,$bTommaso$0154894 801 0$aIT$bsalbc$gISBD 912 $a990001142960203316 951 $aVI.3.B. 2116(V C 1987)$b166915 L.M.$cV C$d00096529 959 $aBK 969 $aUMA 979 $aMARIA$b10$c20030415$lUSA01$h1212 979 $aRENATO$b90$c20030916$lUSA01$h1258 979 $aPATRY$b90$c20040406$lUSA01$h1719 979 $aCOPAT5$b90$c20060309$lUSA01$h1406 996 $aAsimmetrie del due$9980753 997 $aUNISA LEADER 02687nam 2200553 a 450 001 9910484188803321 005 20200520144314.0 010 $a9783642166327 010 $a3642166326 024 7 $a10.1007/978-3-642-16632-7 035 $a(CKB)2670000000065010 035 $a(SSID)ssj0000476703 035 $a(PQKBManifestationID)11284253 035 $a(PQKBTitleCode)TC0000476703 035 $a(PQKBWorkID)10479992 035 $a(PQKB)11272166 035 $a(DE-He213)978-3-642-16632-7 035 $a(MiAaPQ)EBC3066275 035 $a(PPN)149908148 035 $a(EXLCZ)992670000000065010 100 $a20110202d2011 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSome mathematical models from population genetics $eEcole d'Ete de Probabilites de Saint-Flour XXXIX-2009 205 $a1st ed. 2011. 210 $aHeidelberg $cSpringer$d2011 215 $a1 online resource (VIII, 119 p. 15 illus.) 225 1 $aLecture notes in mathematics,$x0075-8434, 1617-9692 ;$v2012 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642166310 311 08$a3642166318 320 $aIncludes bibliographical references and index. 330 $aThis work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2012. 606 $aPopulation genetics$xMathematical models 615 0$aPopulation genetics$xMathematical models. 676 $a576.58015118 700 $aEtheridge$b Alison$060921 712 12$aEcole d'e?te? de probabilite?s de Saint-Flour 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484188803321 996 $aSome mathematical models from population genetics$9261771 997 $aUNINA