LEADER 01229nam0-2200385---450 001 990000962910203316 005 20200904113544.0 035 $a0096291 035 $aUSA010096291 035 $a(ALEPH)000096291USA01 035 $a0096291 100 $a20020215d1991----km-y0ITAy01------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> formalisti russi$eteoria della letteratura e metodo critico$fa cura di Tzvetan Todorov$gprefazione di Roman Jakobson 210 $aTorino$cEinaudi$d1991 215 $a350 p$d18 cm 225 2 $aPiccola biblioteca Einaudi$v111 300 $aTrad. vari 300 $aLa presente edizione è stata curata da Gian Luigi Bravo 312 $aTheorie de la litterature 410 $12001$aPiccola biblioteca Einaudi$v111 454 $12001$aTheorie de la litterature$955890 606 0 $aFormalismo $yRussia$xSaggi 676 $a891.7 702 1$aTODOROV,$bTzvetan 702 1$aJAKOBSON,$bRoman 801 0$aIT$bsalbc$gISBD 912 $a990000962910203316 951 $aVIII.1.D. 2 (VARIE COLL. 11/ 111 BIS)$b109698 L.M.$cVARIE COLL 959 $aBK 969 $aUMA 996 $aTheorie de la litterature$955890 997 $aUNISA LEADER 01335nam a2200325 i 4500 001 991000916689707536 005 20020507175818.0 008 971117s1994 us ||| | eng 020 $a0824790669 035 $ab10775444-39ule_inst 035 $aLE01304282$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.7 084 $aAMS 46-06 084 $aQA319.F86 111 2 $aSymposium on Functional analysis <1991 ; Essen>$0535451 245 10$aFunctional analysis :$bproceedings of the Essen conference /$cedited by Klaus D. Bierstedt ... [et al.] 260 $aNew York ; Basel ; Hong Kong :$bMarcel Dekker,$cc1994 300 $axviii, 526 p. :$bill. ;$c26 cm 490 0 $aLecture notes in pure and applied mathematics,$x0075-8469 ;$v150 500 $aProceedings of the Symposium on Functional Analysis, held in Essen, Germany, Nov. 24-30, 1991. 500 $aIncludes bibliographical references and index 650 4$aFunctional analysis$xCongresses 700 1 $aBierstedt, Klaus-Dieter 907 $a.b10775444$b23-02-17$c28-06-02 912 $a991000916689707536 945 $aLE013 46-XX BIE14 (1994)$g1$i2013000091709$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v2$w1$x0$y.i10874306$z28-06-02 996 $aFunctional analysis$9922864 997 $aUNISALENTO 998 $ale013$b01-01-97$cm$da $e-$feng$gus $h0$i1 LEADER 04103nam 2201009z- 450 001 9910557553903321 005 20210501 035 $a(CKB)5400000000044067 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68541 035 $a(oapen)doab68541 035 $a(EXLCZ)995400000000044067 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aInnovative Topologies and Algorithms for Neural Networks 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (198 p.) 311 08$a3-0365-0284-X 311 08$a3-0365-0285-8 330 $aThe introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text processing, medical applications, and IoT (Internet of Things). The probability of a successful outcome from a neural network is linked to selection of an appropriate network architecture and training algorithm. Accordingly, much of the recent research on neural networks has been devoted to the study and proposal of novel architectures, including solutions tailored to specific problems. This book gives significant contributions to the above-mentioned fields by merging theoretical aspects and relevant applications. 606 $aInformation technology industries$2bicssc 610 $a3D convolution neural network 610 $aaction recognition 610 $aalternative fusion neural network 610 $aArabic named entity recognition 610 $aattention mechanism 610 $aautoencoders 610 $abidirectional gated recurrent unit 610 $abidirectional recurrent neural network 610 $aChinese text classification 610 $aCNN 610 $aconvolution neural Networks 610 $aconvolutional neural network 610 $aconvolutional neural networks 610 $adeep convolutional neural networks 610 $adeep learning 610 $adistributed systems 610 $aelements recognition 610 $aembedded deep learning 610 $afacial image analysis 610 $afacial nerve paralysis 610 $afeature fusion 610 $afully convolutional network 610 $afused features 610 $agesture recognition 610 $agradient-weighted class activation maps 610 $agraph convolutional network 610 $agraph partitioning 610 $aGRU 610 $ahuman computer interaction 610 $aimage classification 610 $aInternet of Things 610 $aIoT (Internet of Thing) systems 610 $alinguistic features 610 $along short-term memory 610 $along short-term-memory 610 $along-short-term memory networks 610 $aLSTM 610 $aLSTM-CRF model 610 $amedical applications 610 $amotion map 610 $amulti-label learning 610 $anatural language processing 610 $aobject detection network 610 $aobject recognition 610 $apedestrian attribute recognition 610 $aPOS syntactic rules 610 $aresource-efficient inference 610 $ascalability 610 $asentiment analysis 610 $asentiment attention mechanism 610 $aship identification 610 $atext recognition 610 $atooth-marked tongue 610 $aword embedding 615 7$aInformation technology industries 700 $aXibilia$b Maria Gabriella$4edt$01096523 702 $aGraziani$b Salvatore$4edt 702 $aXibilia$b Maria Gabriella$4oth 702 $aGraziani$b Salvatore$4oth 906 $aBOOK 912 $a9910557553903321 996 $aInnovative Topologies and Algorithms for Neural Networks$93018938 997 $aUNINA