LEADER 01244nam2-2200373li-450 001 990000214910203316 005 20180312154833.0 010 $a3-540-13902-8 035 $a0021491 035 $aUSA010021491 035 $a(ALEPH)000021491USA01 035 $a0021491 100 $a20001109d1984----km-y0itay0103----ba 101 0 $aeng 102 $aGW 200 1 $aTechniques of admissible recursiontheory$fC.T. Chong 210 $aBerlin [etc.]$cSpringer Verlag$dcopyr. 1984 215 $a214 p. :ill.$d25 cm 225 2 $aLecture notes in mathematics$v1106 410 0$10010021263$12001$aLecture notes in mathematics$ea collection of informal reports and seminars$fedited by A. Dold, Heidelberg and B. Eckmann, Zürich 610 1 $ateoria della ricorrenza 676 $a51135$9. 700 1$aChong,$bChi-Tat$0441174 801 $aSistema bibliotecario di Ateneo dell' Università di Salerno$gRICA 912 $a990000214910203316 951 $a510 LNM (1106)$b0011942 959 $aBK 969 $aSCI 979 $c19900911 979 $c20001110$lUSA01$h1714 979 $c20020403$lUSA01$h1629 979 $aPATRY$b90$c20040406$lUSA01$h1615 996 $aTechniques of admissible recursiontheory$91487773 997 $aUNISA LEADER 01333nam2-2200385li-450 001 990000201010203316 005 20180312154711.0 010 $a3-540-66182-4 035 $a0020101 035 $aUSA010020101 035 $a(ALEPH)000020101USA01 035 $a0020101 100 $a20001109d1999----km-y0itay0103----ba 101 0 $aeng 102 $aGW 200 1 $aDeveloping industrial case-based reasoning applications$ethe INRECA methodology$fRalph Bergmann ...[et al.] (eds.) 210 $aBerlino$cSpringer-Verlag$dcopyr. 1999 215 $aXX, 188 p.$cill.$d23 cm$eCD-ROM 225 2 $aLecture notes in artificial intelligence$v1612 410 0$10010019992$12001$aLecture notes in artificial intelligence 610 1 $aSistemi esperti$aApplicazione all'industria 676 $a658.4 702 1$aBergmann,$bRalph 801 $aSistema bibliotecario di Ateneo dell' Università di Salerno$gRICA 912 $a990000201010203316 951 $a006.3 LNIA (1612)$b0023822 CBS$c006.3$d00100895 959 $aBK 969 $aSCI 979 $c19991002 979 $c20001110$lUSA01$h1713 979 $aALANDI$b90$c20010627$lUSA01$h1251 979 $c20020403$lUSA01$h1628 979 $aPATRY$b90$c20040406$lUSA01$h1614 996 $aDeveloping industrial case-based reasoning applications$91491129 997 $aUNISA LEADER 02779nam 2200637Ia 450 001 9910451084303321 005 20200520144314.0 010 $a1-281-86681-4 010 $a9786611866815 010 $a1-86094-726-3 035 $a(CKB)1000000000336355 035 $a(EBL)296148 035 $a(OCoLC)476063675 035 $a(SSID)ssj0000182990 035 $a(PQKBManifestationID)11178069 035 $a(PQKBTitleCode)TC0000182990 035 $a(PQKBWorkID)10194471 035 $a(PQKB)11691567 035 $a(MiAaPQ)EBC296148 035 $a(WSP)0000P347 035 $a(PPN)114034524 035 $a(Au-PeEL)EBL296148 035 $a(CaPaEBR)ebr10174001 035 $a(CaONFJC)MIL186681 035 $a(EXLCZ)991000000000336355 100 $a20050414d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 13$aAn introduction to the geometry of stochastic flows$b[electronic resource] /$fFabrice Baudoin 210 $aLondon $cImperial College Press$dc2004 215 $a1 online resource (152 p.) 300 $aDescription based upon print version of record. 311 $a1-86094-481-7 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Chapter 1 Formal Stochastic Differential Equations; Chapter 2 Stochastic Differential Equations and Carnot Groups; Chapter 3 Hypoelliptic Flows; Appendix A Basic Stochastic Calculus; Appendix B Vector Fields, Lie Groups and Lie Algebras; Bibliography; Index 330 $aThis book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Ho?rmander's form, by using the connection between stochastic flows and partial differential equations. The book stresses the author's view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry, and its main tools are introduced throughou 606 $aStochastic geometry 606 $aFlows (Differentiable dynamical systems) 606 $aStochastic differential equations 608 $aElectronic books. 615 0$aStochastic geometry. 615 0$aFlows (Differentiable dynamical systems) 615 0$aStochastic differential equations. 676 $a519.2 676 $a519.23 700 $aBaudoin$b Fabrice$0901146 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451084303321 996 $aAn introduction to the geometry of stochastic flows$92014155 997 $aUNINA