LEADER 01454nam0-2200481---450- 001 990000078280203316 005 20050322165010.0 035 $a0007828 035 $aUSA010007828 035 $a(ALEPH)000007828USA01 035 $a0007828 100 $a20000914f1999----|||y0itay0103----ba 101 0 $aita 102 $aIT 105 $aa---||||001yy 200 1 $aVademecum taurasino per l'anno 1999$fa cura di Elio Capobianco, Rinaldo De Angelis 210 $aTaurasi$cComune di Taurasi$d[1999?] 215 $a96 p.$d24 cm 610 $aTaurasi Storia 676 $a945.7212 702 1$aCAPOBIANCO,$cElio 702 1$aDE ANGELIS,$bRinaldo 801 $aIT$bSALBC$gISBD 912 $a990000078280203316 951 $aXV.1.B. 18 (III A 798)$b149430 L.M.$cIII A$d00001666 959 $aBK 979 $c20000914$lUSA01$h1736 979 $c20001019$lUSA01$h1056 979 $c20001019$lUSA01$h1453 979 $c20001019$lUSA01$h1501 979 $c20001019$lUSA01$h1538 979 $c20001024$lUSA01$h1514 979 $c20001027$lUSA01$h1519 979 $c20001027$lUSA01$h1523 979 $c20001110$lUSA01$h1710 979 $c20001124$lUSA01$h1208 979 $c20020403$lUSA01$h1615 979 $aPATRY$b90$c20040406$lUSA01$h1606 979 $aCOPAT4$b90$c20050322$lUSA01$h1650 979 $aPATRY$b90$c20121106$lUSA01$h1536 996 $aVademecum taurasino per l'anno 1999$91487179 997 $aUNISA bas $auma LEADER 01222nam a2200337 i 4500 001 991001164179707536 005 20020507184426.0 008 960703s1995 us ||| | eng 020 $a0898713404 035 $ab1080965x-39ule_inst 035 $aLE01308050$9ExL 040 $aDip.to Matematica$beng 082 0 $a532.051 084 $aAMS 35Q30 084 $aAMS 76D05 084 $aAMS 76D07 100 1 $aTemam, Roger$021480 245 10$aNavier-Stokes equations and nonlinear functional analysis /$cRoger Temam 250 $a2nd ed. 260 $aPhiladelphia, Pennsylvania :$bSIAM (Society for Industrial and Applied Mathematics),$c1995 300 $axiv, 141 p. ;$c25 cm 490 0 $aCBMS-NSF Regional conference series in applied mathematics ;$v66 500 $a1st ed.: 1983 650 0$aNavier-Stokes equations 650 0$aStokes flows 907 $a.b1080965x$b23-02-17$c28-06-02 912 $a991001164179707536 945 $aLE013 35Q TEM11 (1995)$g1$i2013000053981$lle013$o-$pE0.00$q-$rl$s- $t0$u8$v2$w8$x0$y.i10914894$z28-06-02 996 $aNavier - Stokes equations and nonlinear functional analysis$934208 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gus $h0$i1