LEADER 00963nam0 2200301 450 001 000026888 005 20091130143507.0 010 $a0072958863 010 $a9780072958867 100 $a20091130d2006----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $ay-------001yy 200 1 $aDatabase system concepts$fAbraham Silberschatz, Henry F. Korth, S. Sudarshan 205 $a5. ed 210 $aBoston$cMcGraw-Hill$dc2006 215 $aXXVI, 1142 p.$d24 cm 500 10$aDatabase system concepts$942291 610 1 $aArchivi di dati 676 $a005.74$v21$9Dati nei sistemi di elaboratori. Archivi e basi di dati 700 1$aSilberschatz,$bAbraham$4070$07949 701 1$aKorth,$bHenry F.$4070$0535101 701 1$aSudarshan,$bS.$4070$0602693 801 0$aIT$bUNIPARTHENOPE$c20091130$gRICA$2UNIMARC 912 $a000026888 951 $aDSA 005-D/1$b3816$cDSA$d2009 996 $aDatabase system concepts$942291 997 $aUNIPARTHENOPE LEADER 00797nam0-22002891i-450- 001 990000277110403321 005 20001010 035 $a000027711 035 $aFED01000027711 035 $a(Aleph)000027711FED01 035 $a000027711 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aPractical guide to respirator usage in industry$fBy Gyan Rajhans, David S.L. Blackwell. 210 $aBoston$cButterworths$dcopyr. 1985 215 $aXIII,161 p., ill., 25 cm 676 $a602 700 1$aRajhans,$bGyan S. 702 1$aBlackwell,$bDavid S.l. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000277110403321 952 $a04 004-180$bIRC 1611/L$fDINCH 959 $aDINCH 997 $aUNINA DB $aING01 LEADER 05567nam 2200697 a 450 001 9910831064303321 005 20230421041527.0 010 $a1-282-78321-1 010 $a9786612783210 010 $a0-470-93507-3 010 $a1-59124-582-6 010 $a0-470-93506-5 035 $a(CKB)111086367653190 035 $a(EBL)588845 035 $a(OCoLC)301215876 035 $a(SSID)ssj0000072130 035 $a(PQKBManifestationID)11123364 035 $a(PQKBTitleCode)TC0000072130 035 $a(PQKBWorkID)10094586 035 $a(PQKB)11282455 035 $a(MiAaPQ)EBC588845 035 $a(EXLCZ)99111086367653190 100 $a19960619d1996 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGuidelines for use of vapor cloud dispersion models$b[electronic resource] 205 $a2nd ed. 210 $aNew York $cCenter for Chemical Process Safety of the American Institute of Chemical Engineers$dc1996 215 $a1 online resource (293 p.) 300 $aDescription based upon print version of record. 311 $a0-8169-0702-1 320 $aIncludes bibliographical references and index. 327 $aGuidelines for Use of Vapor Cloud Dispersion Models; Contents; PREFACE; ACKNOWLEDGMENTS; NOMENCLATURE; 1. Background and Objectives; 2. Overview of Modeling Procedures, Including Rationale for Selecting Scenarios for Worked Examples; 2.1. Types of Scenarios and Models; 2.2. Gross Screening Analysis; 2.3. Scenarios Selected for Worked Examples; 3. Input Data Required; 3.1. Source Data; 3.2. Site Characteristics; 3.3. Meteorological Data and Formulas for Calculating Input Parameters; 3.4. Receptor-Related Data; 4. Source Emission Models; 4.1. Conceptual Process for Source Term Determination 327 $a4.2. Calculation of Source Terms4.2.1. Gas Jet Releases; 4.2.2. Liquid Jet Releases; 4.2.3. Two-Phase Jet Releases; 4.2.4. Liquid Pool Spreading; 4.2.5. Liquid Pool Evaporation; 4.2.6. Multicomponent Evaporation; 4.3. Uncertainties in Source Term Estimation; 5. Dispersion Models; 5.1. Critical Richardson Number Criterion; 5.2. Jet Trajectory and Entrainment; 5.2.1. Momentum-Dominated Jets; 5.2.2. Elevated Dense Gas Jets; 5.2.3. Positively Buoyant Plumes; 5.3. Dense Gas Release at Grade; 5.3.1. Background and Overview; 5.3.2. Dense Gas Clouds in the Absence of Heat Exchange 327 $a5.3.3. Dense Gas Clouds in the Presence of Heat Exchanges5.4. Transport and Dispersion of Neutrally Buoyant or Passive Gas Clouds; 5.5. Simple Nomograms for Calculating the Dilution of Dense Gas Release; 5.6. Three-Dimensional Numerical Models of Dense Gas Dispersion; 5.7. Transport and Dispersion Near Buildings; 5.7.1. Plume Confinement by Canyons; 5.7.2. Concentrations on Building Faces Due to Releases from Vents; 5.7.3. Concentrations on the Building Downwind Face (the Near-Wake) Due to Releases from Sources on the Building; 5.7.4. Other Effects of Buildings 327 $a5.8. Worst Case Meteorological Conditions5.9. Removal by Dry and Wet Deposition; 5.9.1. Gravitational Settling of Lorge Particles or Aerosols; 5.9.2. Dry Deposition of Small Particles and Gases; 5.9.3. Removal of Particles and Gases by Precipitation and Clouds (Wet Deposition); 6. Averaging Times, Concentration Fluctuations, and Modeling Uncertainties; 6.1. Overview of Physical Considerations Related to Averaging Time; 6.2. Overview of Characteristics of Concentration Fluctuations in Plumes 327 $a6.3. Predictions of Concentrations on the Plume Centerline at a Given Downwind Distance as a Function of Averaging Time, Ta6.4. Predictions of Concentrations at a Given Receptor Position as a Function of Averaging Time, Ta; 6.5. Threshold Crossing Probability; 6.6. A General Structure for the Analysis of Model Uncertainties; 7. Overview of Operational Vapor Cloud Models in Common Use; 7.1. Summary of Commonly Used Models; 7.2. Characteristics of Commonly Used Vapor Cloud Dispersion Models; 8. Evaluation of Models with Field Data; 8.1. Description of Field Data Sets 327 $a8.2. Model Evaluation Procedures 330 $aThe second edition of this essential reference updates and combines two earlier titles to capture the many technological advances for predicting the ""footprint"" of a vapor cloud release. Cited by EPA in its 1996 document, ""Off-Site Consequence Analysis Guidance,"" the aim of the book is to encourage and facilitate the development and use of dispersion modeling as an everyday tool, providing practical understanding of basic physical and chemical principles, guidance in selecting release scenarios and the best available models, and information and examples on how to run some models and interp 606 $aAtmospheric diffusion$xMathematical models 606 $aHazardous substances$xEnvironmental aspects$xMathematical models 606 $aVapors$xMathematical models 615 0$aAtmospheric diffusion$xMathematical models. 615 0$aHazardous substances$xEnvironmental aspects$xMathematical models. 615 0$aVapors$xMathematical models. 676 $a533.63 676 $a533/.63 676 $a628.5/3/0113 676 $a628.53011 676 $a628.530113 712 02$aAmerican Institute of Chemical Engineers.$bCenter for Chemical Process Safety. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910831064303321 996 $aGuidelines for use of vapor cloud dispersion Models$9127017 997 $aUNINA LEADER 05832nam 2200841Ia 450 001 9910812555803321 005 20200520144314.0 010 $a9781118578339 010 $a1118578333 010 $a9781118578346 010 $a1118578341 010 $a9781299475588 010 $a1299475582 010 $a9781118576687 010 $a1118576683 035 $a(CKB)2550000001020346 035 $a(EBL)1168522 035 $a(OCoLC)841914036 035 $a(SSID)ssj0000904707 035 $a(PQKBManifestationID)11512245 035 $a(PQKBTitleCode)TC0000904707 035 $a(PQKBWorkID)10924538 035 $a(PQKB)11666983 035 $a(MiAaPQ)EBC1168522 035 $a(Au-PeEL)EBL1168522 035 $a(CaPaEBR)ebr10687765 035 $a(CaONFJC)MIL478808 035 $a(PPN)192204971 035 $a(OCoLC)1292941921 035 $a(FINmELB)ELB178729 035 $a(Perlego)1004106 035 $a(EXLCZ)992550000001020346 100 $a20130418d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplied diffusion processes from engineering to finance /$fJacques Janssen, Oronzio Manca, Raimando Manca 205 $a1st ed. 210 $aLondon $cWiley$d2013 215 $a1 online resource (411 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 08$a9781848212497 311 08$a1848212496 327 $aTitle Page; Contents; Introduction; Chapter 1. Diffusion Phenomena and Models; 1.1. General presentation of diffusion process; 1.2. General balance equations; 1.3. Heat conduction equation; 1.4. Initial and boundary conditions; Chapter 2. Probabilistic Models of Diffusion Processes; 2.1. Stochastic differentiation; 2.1.1. Definition; 2.1.2. Examples; 2.2. Ito?'s formula; 2.2.1. Stochastic differential of a product; 2.2.2. Ito?'s formula with time dependence; 2.2.3. Interpretation of Ito?'s formula; 2.2.4. Other extensions of Ito?'s formula; 2.3. Stochastic differential equations (SDE) 327 $a2.3.1. Existence and unicity general theorem (Gikhman and Skorokhod [GIK 68])2.3.2. Solution of SDE under the canonical form; 2.4. Ito? and diffusion processes; 2.4.1. Ito? processes; 2.4.2. Diffusion processes; 2.4.3. Kolmogorov equations; 2.5. Some particular cases of diffusion processes; 2.5.1. Reduced form; 2.5.2. The OUV (Ornstein-Uhlenbeck-Vasicek) SDE; 2.5.3. Solution of the SDE of Black-Scholes-Samuelson; 2.6. Multidimensional diffusion processes; 2.6.1. Multidimensional SDE; 2.6.2. Multidimensional Ito? and diffusion processes; 2.6.3. Properties of multidimensional diffusion processes 327 $a2.6.4. Kolmogorov equations2.7. The Stroock-Varadhan martingale characterization of diffusions (Karlin and Taylor [KAR 81]); 2.8. The Feynman-Kac formula (Platen and Heath); 2.8.1. Terminal condition; 2.8.2. Discounted payoff function; 2.8.3. Discounted payoff function and payoff rate; Chapter 3. Solving Partial Differential Equations of Second Order; 3.1. Basic definitions on PDE of second order; 3.1.1. Notation; 3.1.2. Characteristics; 3.1.3. Canonical form of PDE; 3.2. Solving the heat equation; 3.2.1. Separation of variables 327 $a3.2.2. Separation of variables in the rectangular Cartesian coordinates3.2.3. Orthogonality of functions; 3.2.4. Fourier series; 3.2.5. Sturm-Liouville problem; 3.2.6. One-dimensional homogeneous problem in a finite medium; 3.3. Solution by the method of Laplace transform; 3.3.1. Definition of the Laplace transform; 3.3.2. Properties of the Laplace transform; 3.4. Green's functions; 3.4.1. Green's function as auxiliary problem to solve diffusive problems; 3.4.2. Analysis for determination of Green's function; Chapter 4. Problems in Finance; 4.1. Basic stochastic models for stock prices 327 $a4.1.1. The Black, Scholes and Samuelson model4.1.2. BSS model with deterministic variation of ? and s; 4.2. The bond investments; 4.2.1. Introduction; 4.2.2. Yield curve; 4.2.3. Yield to maturity for a financial investment and for a bond; 4.3. Dynamic deterministic continuous time model for instantaneous interest rate; 4.3.1. Instantaneous interest rate; 4.3.2. Particular cases; 4.3.3. Yield curve associated with instantaneous interest rate; 4.3.4. Examples of theoretical models; 4.4. Stochastic continuous time dynamic model for instantaneous interest rate; 4.4.1. The OUV stochastic model 327 $a4.4.2. The CIR model (1985) 330 $a The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems pres 410 0$aISTE. 606 $aBusiness mathematics 606 $aDifferential equations, Partial 606 $aDiffusion processes 606 $aEngineering mathematics 615 0$aBusiness mathematics. 615 0$aDifferential equations, Partial. 615 0$aDiffusion processes. 615 0$aEngineering mathematics. 676 $a519.233 700 $aJanssen$b Jacques$0726990 701 $aManca$b Oronzio$06378 701 $aManca$b Raimondo$0327298 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812555803321 996 $aApplied diffusion processes from engineering to finance$94114938 997 $aUNINA