LEADER 00765nam0 2200229 450 001 000024274 005 20090311175539.0 100 $a20090311d1835----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $aElementi di geodesia$fdel professore di geografia matematica Tommaso Farias 210 $aNapoli$bStrada Costantinopoli N. 103$cTipografia Giacomo Testa$d1835 215 $a[6], 122, [2] p., [3] c. di tav. ripieg.$cill.$d20 cm 500 10$aElementi di geodesia$945454 610 1 $aGeodesia 676 $a526.1$v20$9Geodesia 700 1$aFarias,$bTommaso$0633237 801 0$aIT$bUNIPARTHENOPE$c20090311$gRICA$2UNIMARC 912 $a000024274 951 $aS 526.1/3$bS 900$cDSA$d2009 996 $aElementi di geodesia$945454 997 $aUNIPARTHENOPE LEADER 01122nam a2200313 i 4500 001 991001284169707536 005 20020507113843.0 008 970308s1973 uk ||| | eng 035 $ab1019910x-39ule_inst 035 $aLE00645196$9ExL 040 $aDip.to Fisica$bita 084 $a53 084 $a53.3.13 084 $a510.22 084 $aQ172.5 100 1 $aBoardman, A.D.$026112 245 10$aSymmetry and its applications in science /$cA.D. Boardman, D.E. O'Connor and P.A. Young 260 $aLondon :$bMcGraw-Hill Book Co.,$c1973 300 $axiii, 305 p. :$bill. ;$c23 cm. 650 4$aSymmetry 700 1 $aO'Connor, D. 700 1 $aYoung, P.A. 907 $a.b1019910x$b21-09-06$c27-06-02 912 $a991001284169707536 945 $aLE006 510:53 BOA$g1$i2006000019521$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10245844$z27-06-02 945 $aLE006 510:53 BOA$g1$i2006000019538$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10245856$z27-06-02 996 $aSymmetry and its applications in science$9190907 997 $aUNISALENTO 998 $ale006$b01-01-97$cm$da $e-$feng$guk $h0$i2 LEADER 01154nam0 22003011i 450 001 UON00327936 005 20231205104208.390 010 $a35-330-2428-8 100 $a20090728d1976 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| 1|||| 200 1 $aEzra Pound und China$fMonika Motsch 210 $aHeidelberg$cWinter$d1976 215 $a180 p.$d24 cm 410 1$1001UON00087791$12001 $aHeidelberger Forschungen$1210 $aHeildelberg$cC. Winter$v17 606 $aPOUND EZRA$3UONC040362$2FI 606 $aPOESIA AMERICANA$xInflussi cinesi$3UONC096998$2FI 620 $aDE$dHeidelberg$3UONL000174 676 $a811.5$cPoesia americana in inglese. 1900-1999$v21 700 1$aMOTSCH$bMonika$3UONV186852$0700514 712 $aWinter Universitätsverlag$3UONV260404$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00327936 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI NordA V B POU MOT $eSI LO 22949 5 996 $aEzra Pound und China$91368896 997 $aUNIOR LEADER 11858nam 22006013 450 001 9911020104403321 005 20240831060209.0 010 $a9781394286577 010 $a1394286570 010 $a9781119896104 010 $a111989610X 010 $a9781119896098 010 $a1119896096 035 $a(CKB)34342886300041 035 $a(MiAaPQ)EBC31622273 035 $a(Au-PeEL)EBL31622273 035 $a(Exl-AI)31622273 035 $a(OCoLC)1455128436 035 $a(EXLCZ)9934342886300041 100 $a20240831d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPractical Gamma-Ray Spectrometry 205 $a3rd ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (542 pages) 311 08$a9781119896081 311 08$a1119896088 327 $aCover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Internet Resources Within the Book -- About the Website -- Chapter 1 Radioactive Decay and the Origin of Gamma and X?Radiation -- 1.1 Introduction -- 1.2 Beta Decay -- 1.2.1 ?? or Negatron Decay -- 1.2.2 ?+ or Positron Decay -- 1.2.3 Electron Capture (EC) -- 1.2.4 Multiple Stable Isotopes -- 1.3 Alpha Decay -- 1.4 Spontaneous Fission (SF) -- 1.5 Exotic Decay Modes -- 1.6 Gamma Emission -- 1.6.1 The Electromagnetic Spectrum -- 1.6.2 Some Properties of Nuclear Transitions -- 1.6.3 Lifetimes of Nuclear Energy Levels -- 1.6.4 Width of Nuclear Energy Levels -- 1.6.5 Internal Conversion -- 1.6.6 Abundance, Yield and Emission Probability -- 1.6.7 Ambiguity in Assignment of Nuclide Identity -- 1.7 Other Sources of Photons -- 1.7.1 Annihilation Radiation -- 1.7.2 Bremsstrahlung -- 1.7.3 Prompt Gamma?Rays -- 1.7.4 X?rays -- 1.7.4.1 X?ray Nomenclature -- 1.7.4.2 X?ray Energies -- 1.7.4.3 X?rays and Identification -- 1.7.4.4 The Energy Widths of X?rays -- 1.8 The Mathematics of Decay and Growth of Radioactivity -- 1.8.1 The Decay Equation -- 1.8.2 Growth of Activity in Reactors -- 1.8.3 Growth of Activity from Decay of a Parent -- 1.8.3.1 Transient Equilibrium - t1/2 Parent?> -- t1/2 Daughter -- 1.8.3.2 Secular Equilibrium - t1/2 Parent?& -- gg -- t1/2 Daughter -- 1.8.3.3 No Equilibrium - t1/2 Parent?< -- t1/2 Daughter -- 1.8.3.4 Multiple Parent-Daughter Relationships -- 1.9 The Chart of the Nuclides -- 1.9.1 A Source of Nuclear Data -- 1.9.2 A Source of Generic Information -- 1.9.2.1 Thermal Neutron Capture (n, ?) -- 1.9.2.2 Fast Neutron Reactions, (n, p), etc. -- 1.9.2.3 Fission Reactions (n, f) -- Practical Points -- Further Reading -- Chapter 2 Interactions of Gamma Radiation with Matter. 327 $a2.1 Introduction -- 2.2 Mechanisms of Interaction -- 2.2.1 Photoelectric Absorption -- 2.2.2 Compton Scattering -- 2.2.3 Pair Production -- 2.3 Total Attenuation Coefficients -- 2.4 Interactions Within the Detector -- 2.4.1 The Very Large Detector -- 2.4.2 The Very Small Detector -- 2.4.3 The 'Real' Detector -- 2.4.4 Summary -- 2.5 Interactions Within the Shielding -- 2.5.1 Photoelectric Interactions -- 2.5.2 Compton Scattering -- 2.5.3 Pair Production -- 2.6 Bremsstrahlung -- 2.7 Attenuation of Gamma Radiation -- 2.8 The Design of Detector Shielding -- Practical Points -- Further Reading -- Chapter 3 Semiconductor Detectors for Gamma?Ray Spectrometry -- 3.1 Introduction -- 3.2 Semiconductors and Gamma?Ray Detection -- 3.2.1 The Band Structure of Solids -- 3.2.2 Mobility of Holes -- 3.2.3 Creation of Charge Carriers by Gamma Radiation -- 3.2.4 Suitable Semiconductors for Gamma?Ray Detectors -- 3.2.5 Newer Semiconductor Materials -- 3.3 The Nature of Semiconductors -- 3.4 The Manufacture of Germanium Detectors -- 3.4.1 Introduction -- 3.4.2 The Manufacturing Process -- 3.4.3 Lithium?Drifted Detectors -- 3.4.4 Detector Configurations -- 3.4.5 Absorption in Detector Caps and Dead Layers -- 3.4.6 Detectors for Low?Energy Measurements -- 3.4.7 Well Detectors -- 3.5 Detector Capacitance -- 3.5.1 Microphonic Noise -- 3.6 Charge Collection in Detectors -- 3.6.1 Charge Collection Time -- 3.6.2 Shape of the Detector Pulse -- 3.6.3 Timing Signals from Germanium Detectors -- 3.6.4 Electric Field Variations Across the Detector -- 3.6.5 Removing Weak Field Regions from Detectors -- 3.6.6 Trapping of Charge Carriers -- 3.6.7 Radiation Damage -- 3.7 Packaging of Detectors -- 3.7.1 Construction of the Detector Mounting -- 3.7.2 Loss of Coolant -- 3.7.3 Demountable Detectors -- 3.7.4 Electrical Cooling of Detectors -- 3.8 Position?Sensitive Detectors. 327 $a3.8.1 Segmentation -- 3.8.2 Gamma?Ray Tracking -- Practical Points -- Further Reading -- Chapter 4 Electronics for Gamma?Ray Spectrometry -- 4.1 The General Electronic System -- 4.1.1 Introduction -- 4.1.2 Electronic Noise and Its Implications for Spectrum Resolution -- 4.1.3 Pulse Shapes in Gamma Spectrometry Systems -- 4.1.4 Impedance - Inputs and Outputs -- 4.1.5 The Impedance of Cabling -- 4.1.6 Impedance Matching -- 4.2 Detector Bias Supplies -- 4.3 Preamplifiers -- 4.3.1 Resistive Feedback Preamplifiers -- 4.3.2 Reset Preamplifiers -- 4.3.3 The Noise Contribution of Preamplifiers -- 4.3.4 The Rise Time of Preamplifiers -- 4.3.5 Intelligent Preamplifiers and High?Voltage Supplies -- 4.4 Amplifiers and Pulse Processors -- 4.4.1 The Functions of the Amplifier -- 4.4.2 Pulse Shaping -- 4.4.3 The Optimum Pulse Shape -- 4.4.4 The Optimum Pulse Shaping Time Constant -- 4.4.5 The Gated Integrator Amplifier -- 4.4.6 Pole?zero Cancellation -- 4.4.7 Baseline Shift -- 4.4.8 Pile?up Rejection -- 4.4.9 Amplifier Gain and Overview -- 4.5 Resolution Enhancement -- 4.5.1 New Semiconductor Materials -- 4.6 Multichannel Analysers and Their Analogue?to?Digital Converters -- 4.6.1 Introduction -- 4.6.2 Pulse Range Selection -- 4.6.3 The ADC Input Gate -- 4.6.4 The ADC -- 4.6.4.1 The Wilkinson ADC -- 4.6.4.2 The Successive Approximation ADC -- 4.6.5 MCA Conversion Time and Dead Time -- 4.6.6 Choosing an ADC -- 4.6.7 Linearity in MCAs -- 4.6.8 Optimum Spectrum Size -- 4.6.9 MCA Terms and Definitions -- 4.6.10 A Short History of MCA Systems -- 4.6.11 Simple MCA Analysis Functions -- 4.7 Live Time Correction and Loss?Free Counting -- 4.7.1 Live Time Clock Correction -- 4.7.2 The Gedcke-Hale Method -- 4.7.3 Use of a Pulser -- 4.7.4 Loss?Free Counting (LFC) -- 4.7.5 MCA Throughput -- 4.8 Spectrum Stabilization -- 4.8.1 Analogue Stabilization. 327 $a4.8.2 Digital Stabilization -- 4.9 Coincidence and Anticoincidence Gating -- 4.10 Multiplexing and Multiscaling -- 4.11 Digital Pulse Processing Systems -- Practical Points -- Further Reading -- Chapter 5 Statistics of Counting -- 5.1 Introduction -- 5.1.1 Statistical Statements -- 5.2 Counting Distributions -- 5.2.1 The Binomial Distribution -- 5.2.2 The Poisson and Gaussian Distributions -- 5.3 Sampling Statistics -- 5.3.1 Confidence Limits -- 5.3.2 Combining the Results from Different Measurements -- 5.3.3 Propagation of Uncertainty -- 5.4 Peak Area Measurement -- 5.4.1 Simple Peak Integration -- 5.4.2 Peaked?Background Correction -- 5.5 Counting Decision Limits -- 5.5.1 Critical Limit (LC): 'Is the Net Count Significant?' -- 5.5.2 Upper Limit (LU): 'Given That This Count Is Not Statistically Significant, What Is the Maximum Statistically Reasonable Count?' -- 5.5.3 Confidence Limits -- 5.5.4 Detection Limit (LD): 'What Is the Minimum Number of Counts that I Can Be Confident of Detecting?' -- 5.5.5 Determination Limit (LQ): 'How Many Counts Would I Have to Have to Achieve a Particular Statistical Uncertainty?' -- 5.5.6 Other Calculation Options -- 5.5.7 Minimum Detectable Activity (MDA): 'What Is the Least Amount of Activity I Can Be Confident of Measuring?' -- 5.5.8 Uncertainty of the LU and MDA -- 5.5.9 An Example by Way of Summary -- 5.6 Special Counting Situations -- 5.6.1 Non?Poisson Counting -- 5.6.2 Low Numbers of Counts -- 5.6.3 Non?Poisson Statistics Due to Pile?up Rejection and Loss?Free Counting -- 5.7 Optimizing Counting Conditions -- 5.7.1 Optimum Background Width -- 5.7.2 Optimum Peak Width -- 5.7.3 Optimum Spectrum Size -- 5.7.4 Optimum Counting Time -- 5.8 Uncertainty Budgets -- 5.8.1 Introduction -- 5.8.2 Accuracy and Precision -- 5.8.3 Types of Uncertainty -- 5.8.4 Types of Distribution -- 5.8.5 Uncertainty on Sample Preparation. 327 $a5.8.6 Counting Uncertainties -- 5.8.7 Calibration Uncertainties -- 5.8.7.1 Nuclear Data Uncertainty -- 5.8.7.2 Uncertainty on Efficiency Calibration Standards -- 5.8.8 An Example of an Uncertainty Budget -- Practical Points -- Further Reading -- Chapter 6 Resolution: Origins and Control -- 6.1 Introduction -- 6.2 Charge Production - ?P -- 6.2.1 Germanium Versus Silicon -- 6.2.2 Germanium Versus Sodium Iodide -- 6.2.3 Temperature Dependence of Resolution -- 6.3 Charge Collection - ?C -- 6.3.1 Mathematical Form of ?C -- 6.4 Electronic Noise - ?E -- 6.4.1 Parallel Noise -- 6.4.2 Series Noise -- 6.4.3 Flicker Noise -- 6.4.4 Total Electronic Noise and Shaping Time -- 6.5 Resolving the Peak Width Calibration -- Practical Points -- Further Reading -- Chapter 7 Spectrometer Calibration -- 7.1 Introduction -- 7.2 Reference Data for Calibration -- 7.3 Sources for Calibration -- 7.4 Energy Calibration -- 7.4.1 Errors in Peak Energy Determination -- 7.5 Peak Width Calibration -- 7.5.1 Factors Affecting Peak Width -- 7.5.2 Algorithms for Peak Width Estimation -- 7.5.3 Estimation of the Peak Height -- 7.5.4 Anomalous Peak Widths -- 7.6 Efficiency Calibration -- 7.6.1 Which Efficiency? -- 7.6.2 Full?energy Peak Efficiency -- 7.6.3 Is an Efficiency Calibration Curve Necessary? -- 7.6.4 The Effect of Source?to?Detector Distance -- 7.6.5 Calibration Errors Due to Difference in Sample Geometry -- 7.6.6 An Empirical Correction for Sample Height -- 7.6.7 Effect of Source Density on Efficiency -- 7.6.7.1 Corrections Based on Estimated Mass Attenuation Coefficients -- 7.6.7.2 Empirical Correction for Self?absorption -- 7.6.8 Efficiency Loss Due to Random Summing (Pile?up) -- 7.6.9 True Coincidence Summing -- 7.6.10 Corrections for Radioactive Decay -- 7.6.11 Electronic Timing Problems -- 7.7 Absolute Total Efficiency -- 7.8 Mathematical Efficiency Calibration. 327 $a7.8.1 Empirical Mathematics. 330 $aThis comprehensive guide to gamma-ray spectrometry, authored by Gordon Gilmore and David Joss, provides a detailed exploration of the principles and practices involved in the field. The book covers a wide range of topics, including radioactive decay, interactions of gamma radiation with matter, and the use of semiconductor and scintillation detectors. It also delves into the electronics necessary for gamma-ray spectrometry, statistical methods for data analysis, and calibration techniques. The authors aim to provide both theoretical knowledge and practical insights, making the book suitable for researchers, practitioners, and students in nuclear physics and related disciplines. The third edition includes updated content reflecting advances in technology and methodology, ensuring its relevance to current scientific and industrial applications.$7Generated by AI. 606 $aGamma ray spectrometry$7Generated by AI 606 $aRadioactive decay$7Generated by AI 615 0$aGamma ray spectrometry 615 0$aRadioactive decay 676 $a537.5/352 700 $aGilmore$b Gordon$0521184 701 $aJoss$b David$01837541 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020104403321 996 $aPractical Gamma-Ray Spectrometry$94416284 997 $aUNINA