LEADER 00900nam0 2200289 450 001 000021518 005 20090114135239.0 100 $a20090114d1970----km-y0itay50------ba 101 1 $aita$ceng 102 $aIT 105 $aa-------001yy 200 1 $a<>fisica di Berkeley$fCharles Kittel, Walter D. Knight, Malvin A. Ruderman$gtraduzione di Donatello Canalini ... [et al.] 210 $aBologna$cZanichelli$dc1970 215 $av.$cill.$d25 cm 327 0 $a1.: Meccanica 500 10$aMechanics$m$928142 610 1 $aMeccanica 676 $a531$v20$9Meccanica 700 1$aKittel,$bCharles$01113 702 1$aCanalini,$bDonatello 702 1$aKnight,$bWalter D. 702 1$aRuderman,$bMalvin A. 801 0$aIT$bUNIPARTHENOPE$c20090114$gRICA$2UNIMARC 912 $a000021518 951 $aG 531/12$bG 728$cDSA$d2009 996 $aMechanics$928142 997 $aUNIPARTHENOPE LEADER 06227nam 2201609z- 450 001 9910557610903321 005 20220321 035 $a(CKB)5400000000045293 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/79604 035 $a(oapen)doab79604 035 $a(EXLCZ)995400000000045293 100 $a20202203d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBattery Systems and Energy Storage beyond 2020 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 online resource (338 p.) 311 08$a3-0365-3025-8 311 08$a3-0365-3024-X 330 $aCurrently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions. 606 $aResearch & information: general$2bicssc 610 $aAC current injection 610 $aacetyltributylcitrate 610 $aadditive 610 $aartificial intelligence 610 $aartificial neural network 610 $abattery efficiency 610 $abattery energy storage 610 $abattery management system 610 $abattery model 610 $abattery monitoring 610 $abattery sizing 610 $abattery thermal management systems 610 $abi-directional control 610 $acell thickness 610 $aCFD simulations 610 $acharger 610 $aCoulombic efficiency 610 $adegradation mechanisms 610 $adigital twin 610 $adirect recycling 610 $adisassembly 610 $adisassembly planner design 610 $adisassembly strategy optimization 610 $adistribution network 610 $adoctor blade coating 610 $aDoyle-Fuller-Newman model 610 $aDRT by time domain data 610 $aecofriendly electrolyte for lithium-ion batteries 610 $aEIS 610 $aelectric vehicle battery 610 $aelectro-thermal model 610 $aelectrochemical impedance spectroscopy 610 $aelectrode fabrication 610 $aelectrolyte 610 $aelectronic battery sensor 610 $aenergy storage 610 $aenhanced electrolyte safety based on high flash point 610 $aequivalent circuit model 610 $aether based electrolyte 610 $afailure distribution 610 $afailure modes 610 $afailure rates 610 $afield battery investigation 610 $agenetic algorithm 610 $aglobal warming potential 610 $aincreased thermal stability of electrolytes 610 $ainsitu deposited lithium-metal electrode 610 $aintelligent battery 610 $aintercalation 610 $ainterface 610 $alead batteries 610 $aLi-ion battery 610 $alife cycle assessment 610 $aliquid cooling 610 $alithium battery 610 $alithium deposition morphology 610 $alithium ion battery 610 $alithium-ion batteries 610 $alithium-ion battery 610 $alithium-ion battery cell 610 $alithium-ion cells 610 $amanganese dioxide 610 $amechanical aging 610 $amechanical degradation 610 $amixing ratio 610 $amodel 610 $aneural network 610 $anon-uniform volume change 610 $aonline diagnosis 610 $aparameter estimation 610 $aparticle swarm optimization 610 $apolymer binder 610 $apost-mortem analysis 610 $apower supply system 610 $apseudocapacitance 610 $apulse evaluation 610 $aredox flow battery 610 $arelaxation voltage 610 $arenewable energy 610 $arenewable energy integration 610 $aresidential load 610 $asafe supply 610 $asafety battery 610 $asafety concept 610 $asecondary battery 610 $aSEM+EDX 610 $asensorless temperature measurement 610 $asmart cell 610 $asodium-ion 610 $asolar photovoltaic energy 610 $asolvent 610 $astate monitoring 610 $astate of charge dependency 610 $astate-of-charge 610 $astationary energy storage 610 $atemperature dependency 610 $atemperature estimation 610 $atemperature prediction 610 $athermal runaway 610 $atraction battery 610 $atributylacetylcitrate 610 $avolumetric expansion 610 $awaterjet-based recycling 610 $azinc ion batteries 615 7$aResearch & information: general 700 $aBirke$b Kai Peter$4edt$01314872 702 $aKarabelli$b Duygu$4edt 702 $aBirke$b Kai Peter$4oth 702 $aKarabelli$b Duygu$4oth 906 $aBOOK 912 $a9910557610903321 996 $aBattery Systems and Energy Storage beyond 2020$93032075 997 $aUNINA