LEADER 01653nam0 22003131i 450 001 UON00505134 005 20231205105432.368 010 $a978-88-7140-926-9 100 $a20210302d2018 |0itac50 ba 101 $aeng 102 $aIT 105 $a|||| ||||| 200 1 $aˆThe ‰Iseum Campense from the Roman empire to the modern age$etemple, monument, lieu de mémoire$eproceedings of the international Conference held in Rome at the Royal Netherlands institute in Rome (KNIR), the Accademia di Danimarca, and the Accademia d'Egitto, May 25-27 2016$fedited by Miguel John Versluys, Kristine Bülow Clausen, Giuseppina Capriotti Vittozzi 210 $a[Roma]$cQuasar$d2018 215 $a375 p.$cill.$d28 cm 410 1$1001UON00513917$12001 $aPapers of the Royal Netherlands Institute in Rome$1210 $aRoma$cQuasar$v66 606 $aTEMPIO DI ISIDE AL CAMPO MARZIO < Roma>$xAtti di congressi$3UONC101231$2FI 620 $aIT$dRoma$3UONL000004 676 $a726.1207093763$cARCHITETTURA DI TEMPLI E SANTUARI CLASSICI romani. Provincia di Roma antica$v22 702 1$aBülow Clausen$bKristine$3UONV290329 702 1$aCAPRIOTTI VITTOZZI$bGiuseppina$3UONV177741 702 1$aVERSLUYS$bMiguel John$3UONV210141 712 $aQuasar$3UONV259483$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00505134 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI EG I c 054 $eSI 36565 5 054 996 $aIseum Campense from the Roman empire to the modern age$93900870 997 $aUNIOR LEADER 03055nam 22005775 450 001 9910299767503321 005 20200701133757.0 010 $a3-319-16053-2 024 7 $a10.1007/978-3-319-16053-5 035 $a(CKB)3710000000404032 035 $a(SSID)ssj0001501324 035 $a(PQKBManifestationID)11830580 035 $a(PQKBTitleCode)TC0001501324 035 $a(PQKBWorkID)11522619 035 $a(PQKB)10401167 035 $a(DE-He213)978-3-319-16053-5 035 $a(MiAaPQ)EBC6314505 035 $a(MiAaPQ)EBC5587969 035 $a(Au-PeEL)EBL5587969 035 $a(OCoLC)1066182310 035 $a(PPN)185489885 035 $a(EXLCZ)993710000000404032 100 $a20150404d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis III $eAnalytic and Differential Functions, Manifolds and Riemann Surfaces /$fby Roger Godement 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (VII, 321 p. 25 illus.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-16052-4 327 $aVIII Cauchy Theory -- IX Multivariate Differential and Integral Calculus -- X The Riemann Surface of an Algebraic Function. 330 $aVolume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R). 410 0$aUniversitext,$x0172-5939 606 $aFunctions of real variables 606 $aReal Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12171 615 0$aFunctions of real variables. 615 14$aReal Functions. 676 $a515.8 700 $aGodement$b Roger$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441293 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299767503321 996 $aAnalysis III$92508613 997 $aUNINA