LEADER 02080oas 2200589 a 450 001 9910891612303321 005 20241009170029.0 011 $a2307-5805 035 $a(DE-599)ZDB3064366-1 035 \\$a(CONSER)--2003201124 035 $a(CONSER) 2003201124 035 $a(CKB)4330000000417188 035 $a(EXLCZ)994330000000417188 100 $a20031027a20009999 uyo c 101 0 $aukr 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProblemy istorii? Ukrai?ny XIX-pochatku XX stolitti?a $ezbirnyk naukovykh prat?s? 210 $aKyi?v $cNat?sional?na akademii?a nauk Ukrai?ny, Instytut istorii? Ukrai?ny$d2000- 215 $a1 online resource 311 08$aPrint version: Problemy istoriï Ukraïny XIX-pochatku XX stolitti?a : 2307-5791 (DLC) 2003201124 (OCoLC)53295878 517 1 $aProblemy istorii? Ukrai?ny XIX-pochatku XX st. 517 3 $aProblemy istorii? Ukrai?ny 19. pochatku 20. stolitti?a 517 3 $aProblemy istorii? Ukrai?ny dev'i?atnadt?si?atoho- pochatku dvadt?si?atoho stolitti?a 531 1 $aProbl. i?stor. Ukr. XIX-poc?atku XX st. 607 $aUkraine$xHistory$y19th century$vPeriodicals 607 $aUkraine$xHistory$y20th century$vPeriodicals 607 $aUkraine$2fast$1https://id.oclc.org/worldcat/entity/E39PBJkMMfGYRhk8WcWRp3xJjC 608 $aHistory.$2fast 608 $aPeriodicals.$2fast 712 02$aInstytut istorii? Ukrai?ny (Nat?sional?na akademii?a nauk Ukrai?ny).$bViddil istorii? Ukrai?ny XIX-pochatku XX stolitti?a., 801 0$bDLC 801 1$bDLC 801 2$bIUL 801 2$bOCLCO 801 2$bOCLCQ 801 2$bOCLCF 801 2$bHLS 801 2$bOCLCO 801 2$bOCL 801 2$bCNUTO 801 2$bUAB 801 2$bCUY 801 2$bCOO 801 2$bOCLCL 801 2$bIUL 906 $aJOURNAL 912 $a9910891612303321 920 $aexl_impl conversion 996 $aProblemy istorii? Ukrai?ny XIX-pochatku XX stolitti?a$94264679 997 $aUNINA LEADER 00992nam0 22002531i 450 001 UON00480167 005 20231205105245.141 100 $a20170828d1981 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aˆAn ‰introduction to the History of the English Language$fGeorges Bourcier 210 $aCheltenham$cStanley Thornes$d1981 215 $a230 p.$d23 cm. 316 $avalore stimato$5IT-UONSI Fil.GIII/032 620 $aGB$dCheltenham$3UONL000225 700 1$aBOURCIER$bGeorges$3UONV236013$0154129 712 $aStanley Thornes$3UONV282712$4650 801 $aIT$bSOL$c20241115$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00480167 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI Fil.G III 032 $eSI LO 20154 5 032 valore stimato 996 $aIntroduction to the History of the English Language$91473516 997 $aUNIOR LEADER 10615nam 22005533 450 001 9911020194103321 005 20250311080350.0 010 $a9781394248506 010 $a1394248504 010 $a9781394248490 010 $a1394248490 010 $a9781394248483 010 $a1394248482 035 $a(MiAaPQ)EBC31952678 035 $a(Au-PeEL)EBL31952678 035 $a(CKB)37801588500041 035 $a(OCoLC)1505949442 035 $a(EXLCZ)9937801588500041 100 $a20250311d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aField Effect Transistors 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$d©2025. 215 $a1 online resource (529 pages) 311 08$a9781394248476 311 08$a1394248474 327 $aCover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Classical MOSFET Evolution: Foundations and Advantages -- 1.1 Introduction of Classical MOSFET -- 1.1.1 The Advantages of MOSFET -- 1.2 Dual-Gate MOSFET -- 1.2.1 Advantage -- 1.2.1.1 Scalability -- 1.2.1.2 Improvement of Gain -- 1.2.1.3 Low-Power Consumption -- 1.2.1.4 Better ION/IOFF -- 1.2.1.5 Higher Switching Speed -- 1.2.2 Application -- 1.2.2.1 RF Mixer -- 1.2.2.2 RF Amplifier -- 1.2.2.3 Controllable Gain -- 1.3 Gate-All-Around MOSFET -- 1.3.1 The Fabrication Procedure of GAA MOSFETs -- 1.3.2 Advantage of Gate-All-Around MOSFETs -- 1.3.2.1 Excellent Performance -- 1.3.2.2 The Ability to Shrink -- 1.3.2.3 Adjustable Nanosheet -- 1.3.2.4 Monitoring the Channel by Gate -- 1.4 ID-VG and ID-VG Characteristics of Conventional MOSFETs -- 1.4.1 Introduction to ID-VG Curves -- 1.4.2 Threshold Voltage and Saturation Region -- 1.4.2.1 Role of Threshold Voltage -- 1.4.2.2 Exploring the Saturation Region -- 1.5 Capacitance Characteristics of Conventional MOSFETs -- 1.5.1 The Role of Capacitance in MOSFET Behavior -- 1.5.2 CV Modeling of MOSFET Transistors -- 1.6 Frequency-Dependent Behavior -- 1.6.1 The Importance of Frequency-Dependent Analysis of MOSFET Transistors -- 1.6.2 Applications and Implications -- 1.6.2.1 RF Front-Ends -- 1.6.2.2 High-Speed Data Transmission -- 1.7 Conclusion -- References -- Chapter 2 Marvels of Modern Semiconductor Field-Effect Transistors -- 2.1 Introduction -- 2.2 Tunnel Field-Effect Transistor -- 2.2.1 Tunneling Junction -- 2.3 Junctionless Transistors -- 2.3.1 Physics and Properties -- 2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs -- 2.5 Significance in Modern Electronics -- 2.6 Main Electrical Characteristics of GAA-FETs -- 2.7 GAA-FET Classification -- 2.8 Nanowire Field-Effect Transistors (NW-FETs). 327 $a2.9 Nanosheet Field-Effect Transistors (NS-FETs) -- 2.10 Electrical Characteristics -- 2.11 Conclusion -- References -- Chapter 3 Introduction to Modern FET Technologies -- 3.1 Introduction -- 3.2 FinFETs (Fin Field-Effect Transistors) -- 3.2.1 The Evolution from Planar to FinFET -- 3.2.2 Unleashing the Power of FinFETs -- 3.2.3 Smaller Nodes, Greater Integration -- 3.2.4 Applications Across Industries -- 3.2.5 Challenges and Future Prospects -- 3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency -- 3.3.1 Enter Multi-Gate MOSFETs -- 3.3.2 Three-Dimensional Mastery -- 3.3.3 Superior Switching Speeds -- 3.3.4 Power Efficiency on Point -- 3.3.5 Versatility Across Applications -- 3.3.6 The Future Landscape -- 3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel -- 3.4.1 Scaling Down to the Nanoscale -- 3.4.2 Quantum Tunneling and Beyond -- 3.4.3 FinFETs and Beyond -- 3.4.4 High-Performance Computing -- 3.4.5 Challenges and Innovations -- 3.4.6 The Future of Nanoscale MOSFETs -- 3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology -- 3.5.1 The Essence of HEMTs -- 3.5.2 The Heterojunction Advantage -- 3.5.3 Applications Across Industries -- 3.5.4 Key Advantages of HEMTs -- 3.5.5 Future Prospects -- 3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology -- 3.6.1 The Wonder of Graphene -- 3.6.2 The Structure of GFETs -- 3.6.3 Key Advantages of GFETs -- 3.6.4 Applications Across Industries -- 3.6.5 Challenges and Future Developments -- 3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics -- 3.7.1 The Principle of Quantum Tunneling -- 3.7.2 How TFETs Work -- 3.7.3 Key Advantages of TFETs -- 3.7.4 Applications Across Industries -- 3.7.5 Challenges and Future Prospects. 327 $a3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future -- 3.8.1 The Power of Silicon Carbide -- 3.8.2 Advantages of SiC MOSFETs -- 3.8.3 Applications Across Industries -- 3.8.4 Challenges and Future Developments -- 3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics -- 3.9.1 The Basics of Power MOSFETs -- 3.9.2 Key Features of Power MOSFETs -- 3.9.3 Applications Across Industries -- 3.9.4 Challenges and Future Developments -- 3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors -- 3.10.1 The Wonders of Wide Bandgap -- 3.10.2 Key Features of GaN HEMTs -- 3.10.3 Applications Across Industries -- 3.10.4 Challenges and Future Prospects -- 3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics -- 3.11.1 The Organic Advantage -- 3.11.2 Key Features of OFETs -- 3.11.3 Applications Across Industries -- 3.11.4 Challenges and Future Directions -- 3.12 Conclusion -- Bibliography -- Chapter 4 Scaling of Field-Effect Transistors -- 4.1 Introduction -- 4.2 Short-Channel Effect -- 4.3 FinFET Overview -- 4.3.1 History of Development -- 4.3.2 Difficulties and Challenges -- 4.4 GAAFET Overview -- 4.4.1 History of Development -- 4.4.2 Difficulties and Challenges -- 4.5 Conclusions -- References -- Chapter 5 Future Prospective Beyond CMOS Technology Design -- 5.1 Introduction -- 5.2 Spintronics -- 5.2.1 Applications -- 5.3 Carbon Nanotube Transistors -- 5.4 Memristor -- 5.4.1 Working Principle -- 5.5 Applications -- 5.6 Quantum Dots -- 5.6.1 Operation and Applications -- References -- Chapter 6 Nanowire Transistors -- 6.1 Introduction -- 6.2 Nanowire FETs -- 6.2.1 Device Design -- 6.3 Organic Nanowire Transistors -- 6.4 Conclusion -- References. 327 $aChapter 7 Advancement of Nanotechnology and NP-Based Biosensors -- 7.1 Introduction -- 7.2 Metal Oxide-Based Biosensors -- 7.3 Zinc Oxide-Based Biosensor -- 7.3.1 0D Nanostructures (Zero-Dimensional) -- 7.3.2 1D Nanostructures (One-Dimensional) -- 7.3.3 2D Nanostructures (Two-Dimensional) -- 7.3.4 3D Nanostructures (Three-Dimensional) -- 7.4 AuNP-Based Biosensors -- 7.5 GR-Based Biosensors -- References -- Chapter 8 Technology Behind Junctionless Semiconductor Devices -- 8.1 Introduction -- 8.2 Operating Modes Based on the Structure of the Device -- 8.3 TCAD Simulations -- 8.4 Effect of Temperature -- 8.5 Results and Discussions -- 8.6 Conclusion -- References -- Chapter 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology -- 9.1 Introduction -- 9.1.1 The Evolution of Semiconductor Technology -- 9.1.2 Fundamentals of MOS Transistors -- 9.1.2.1 Structure of a MOS Transistor -- 9.1.2.2 Operation of a MOS Transistor -- 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors -- 9.2 Junctionless MOS Transistors: Principles and Concepts -- 9.2.1 Structure of Junctionless Transistor -- 9.2.2 Junctionless Nanowire Transistor (JNT) -- 9.2.3 Bulk Planar Junctionless Transistor (BPJLT) -- 9.3 Fabrication Techniques for Junctionless Transistors -- 9.3.1 Characteristics of Junctionless Transistors -- 9.3.1.1 Gated Resistor Characteristics -- 9.3.1.2 Gated Resistor and Intrinsic Device Delay Time -- 9.3.1.3 Variation of a Doping Concentration in an n-Type Gated Resistor -- 9.3.1.4 Transfer Characteristics -- 9.3.2 Comparison of Junction and Junctionless Transistor -- 9.4 Real-World Implementations of Junctionless Transistors -- 9.4.1 Current Limitations and Obstacles -- 9.5 Conclusion -- 9.6 Applications -- References. 327 $aChapter 10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD -- 10.1 Introduction -- 10.1.1 Introduction to TFET -- 10.1.1.1 TFET Structure and Working -- 10.2 Junctionless TFETs -- 10.2.1 Motivation for Junctionless TFETs -- 10.2.2 Existing Structure of Junctionless TFET -- 10.3 Design Structure of Junctionless TFETs -- 10.3.1 Junctionless TFET Structure -- 10.4 Conclusion -- References -- Chapter 11 Science and Technology of Tunnel Field-Effect Transistors -- 11.1 Phenomenon of Quantum Tunneling -- 11.2 Tunneling Mathematics -- 11.2.1 Schrodinger's Equation -- 11.2.2 Tunneling Through Rectangular Potential Barrier -- 11.2.3 WKB Approximation Model -- 11.2.4 Local Band-to-Band Tunneling Models -- 11.2.4.1 Kane's Model -- 11.2.5 Non-Local Band-To-Band Tunneling Models -- 11.3 Tunnel Field-Effect Transistors (TFETs) -- 11.3.1 Limitations of MOSFET -- 11.3.2 Mechanism and Structure of TFET -- 11.3.3 Advantages and Limitations of TFET -- 11.3.4 Types of Tunneling -- 11.3.4.1 Point Tunneling -- 11.3.4.2 Line Tunneling -- 11.3.5 Methods of Enhancing Performance of TFETs -- 11.3.5.1 Doping Engineering -- 11.3.5.2 Geometry Engineering -- 11.3.5.3 Material and Band Engineering -- 11.3.5.4 Employing Techniques to Enhance TFET Performance -- 11.3.6 RF and Small Signal Analysis of TFETs -- 11.3.6.1 Small Signal Model of N-TFET in ON/OFF State -- 11.3.7 Applications of TFET Devices -- 11.4 Conclusion -- References -- Chapter 12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption -- 12.1 Introduction -- 12.1.1 The Roadmap for Technology Scaling -- 12.1.2 New Approaches for Upcoming Technology Generations -- 12.2 Energy Harvesting in an Era Beyond Moore's Law. 327 $a12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting. 676 $a621.3815284 700 $aDhanaselvam$b P. Suveetha$01841199 701 $aRao$b K. Srinivasa$0542237 701 $aRahi$b Shiromani Balmukund$01433998 701 $aYadav$b Dharmendra Singh$01841200 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020194103321 996 $aField Effect Transistors$94420832 997 $aUNINA