LEADER 05203nam 2200637z 450 001 9910144734703321 005 20230617041831.0 010 $a1-281-84315-6 010 $a9786611843151 010 $a3-527-61776-0 010 $a3-527-61777-9 035 $a(CKB)1000000000377445 035 $a(EBL)481823 035 $a(OCoLC)289076992 035 $a(SSID)ssj0000231269 035 $a(PQKBManifestationID)11193967 035 $a(PQKBTitleCode)TC0000231269 035 $a(PQKBWorkID)10198589 035 $a(PQKB)11285275 035 $a(MiAaPQ)EBC481823 035 $a(JP-MeL)3000110991 035 $a(NjHacI)991000000000377445 035 $a(EXLCZ)991000000000377445 100 $a20220817d ||| || 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum computing $e a short course from theory to experiment /$f Joachim Stolze, Dieter Suter 210 $aWeinheim$cWiley-VCH$dc2004 210 1$aWeinheim: :$cWiley-VCH,$d2004. 215 $a1 online resource (258 p.) 225 0 $6880-03$aPhysics textbook 300 $aIncludes bibliographical references (p. [227]-240) and index 311 $a3-527-40438-4 320 $aIncludes bibliographical references and index. 327 $aQuantum Computing A Short Course from Theory to Experiment; Contents; Preface; 1 Introduction and survey; 1.1 Information, computers and quantum mechanics; 1.1.1 Digital information; 1.1.2 Moore's law; 1.1.3 Emergence of quantum behavior; 1.1.4 Energy dissipation in computers; 1.2 Quantum computer basics; 1.2.1 Quantum information; 1.2.2 Quantum communication; 1.2.3 Basics of quantum information processing; 1.2.4 Decoherence; 1.2.5 Implementation; 1.3 History of quantum information processing; 1.3.1 Initial ideas; 1.3.2 Quantum algorithms; 1.3.3 Implementations; 2 Physics of computation 327 $a2 .1 Physical laws and information processing2.1.1 Hardware representation; 2.1.2 Quantum vs . classical information processing; 2.2 Limitations on computer performance; 2.2.1 Switching energy; 2.2.2 Entropy generation and Maxwell's demon; 2.2.3 Reversible logic; 2.2.4 Reversible gates for universal computers; 2.2.5 Processing speed; 2.2.6 Storage density; 2.3 The ultimate laptop; 2.3.1 Processing speed; 2.3.2 Maximum storage density; 3 Elements of classical computer science; 3.1 Bits of history; 3.2 Boolean algebra and logic gates; 3.2.1 Bits and gates; 3.2.2 2-bit logic gates 327 $a3.2.3 Minimum set of irreversible gates3.2.4 Minimum set of reversible gates; 3.2.5 The CNOT gate; 3.2.6 The Toffoli gate; 3.2.7 The Fredkin gate; 3.3 Universal cornputers; 3.3.1 The Turing machine; 3.3.2 The Church-Turing hypothesis; 3.4 Complexity and algorithms; 3.4.1 Complexity classes; 3.4.2 Hard and impossible problems; 4 Quantum mechanics; 4.1 Gencral structure; 4.1.1 Spectral lines and stationary states; 4.1.2 Vectors in Hilbert space; 4.1.3 Operators in Hilbert space; 4.1.4 Dynamics and the Hamiltonian operator; 4.1.5 Measurements; 4.2 Quantum states 327 $a4.2.1 The two-dimensional Hilbert space: qubits, spins, and photons4.2.2 Hamiltonian and evolution; 4.2.3 Two or more qubits; 4.2.4 Density operator; 4.2.5 Entanglement and mixing; 4.2.6 Quantification of entanglement; 4.2.7 Bloch sphere; 4.2.8 EPR correlations; 4.2.9 Bell's theorem; 4.2.10 Violation of Bell's inequality; 4.2.11 The no-cloning theorem; 4.3 Measurement revisited; 4.3.1 Quantum mechanical projection postulate; 4.3.2 The Copenhagen interpretation; 4.3.3 Von Neumann's model; 5 Quantum bits and quantum gates; 5.1 Single-qubit gates; 5.1.1 Introduction 327 $a5.1.2 Rotations around coordinate axes5.1.3 General rotations; 5.1.4 Composite rotations; 5.2 Two-qubit gates; 5.2.1 Controlled gates; 5.2.2 Composite gates; 5.3 Universal sets of gates; 5.3.1 Choice of set; 5.3.2 Unitary operations; 5.3.3 Two qubit operations; 5.3.4 Approximating single-qubit gates; 6 Feynman's contribution; 6.1 Simulating physics with computers; 6.1.1 Discrete system representations; 6.1.2 Probabilistic simulations; 6.2 Quantum mechanical computers; 6.2.1 Simple gates; 6.2.2 Adder circuits; 6.2.3 Qubit raising and lowering operators; 6.2.4 Adder Hamiltonian 327 $a7 Errors and decoherence 330 $aThe result of a lecture series, this textbook is oriented towards students and newcomers to the field and discusses theoretical foundations as well as experimental realizations in detail. The authors are experienced teachers and have tailored this book to the needs of students. They present the basics of quantum communication and quantum information processing, leading readers to modern technical implementations. In addition, they discuss errors and decoherence as well as methods of avoiding and correcting them. 606 $6880-04/$1$aQuantum computers 615 0$aQuantum computers 676 $a004.1 686 $a007.1$2njb/09 686 $a548.29$2njb/09 686 $a004.1$2njb/09 700 $aStolze$b Joachim$0522080 702 $aSuter$b Dieter 801 1$bJP-MeL 906 $aBOOK 912 $a9910144734703321 996 $aQuantum computing$93570022 997 $aUNINA LEADER 01176nam0 22003131i 450 001 UON00448795 005 20231205105032.142 010 $a20-7030-243-1 100 $a20141222d1970 |0itac50 ba 101 $afre 102 $aFR 105 $a|||| 1|||| 200 1 $aPoésies$fClaude Roy$gpréface de Pierre Gardais et Jacques Roubaud 210 $aParis$cGallimard$dc1970 215 $a183 p.$d18 cm. 316 $aVALORE STIMATO$5IT-UONSI Francese36 PoésieROY/2 410 1$1001UON00174465$12001 $a Collection Poésie$1210 $aParis$cGallimard 620 $aFR$dParis$3UONL002984 676 $a841$cPoesia francese$v21 700 1$aROY$bClaude$3UONV001609$037233 702 1$aGARDAIS$bPierre$3UONV225025 702 1$aROUBAUD$bJacques$3UONV046003 712 $aGallimard$3UONV246610$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00448795 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI Francese 36 Poésie ROY 2 $eSI LO 37052 7 2 VALORE STIMATO$sBuono 996 $aPoésies$91331965 997 $aUNIOR