LEADER 01306nam--2200373---450- 001 990000357490203316 035 $a0035749 035 $aUSA010035749 035 $a(ALEPH)000035749USA01 035 $a0035749 100 $a20010313d1968----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> cibernetica$econtrollo e comunicazione nell'animale e nella macchina$fNorbert Wiener$gtraduzione di Giampaolo Barosso 210 $aMilano$cIl Saggiatore$d1968 215 $a269 p.$cill.$d21 cm 225 2 $aBiblioteca di filosofia e di scienze dell'uomo$v25 312 $aTrad. di: Cybernetics$eor control and communication in the animal and the machine 410 $12001$aBiblioteca di filosofia e di scienze dell'uomo$v25 454 1$12001$aCybernetics$eor control and communication in the animal and the machine$924762 676 $a001.53 700 1$aWIRNER,$bNorbert$0543423 702 1$aBAROSSO,$bGiampaolo 801 0$aIT$bsalbc$gISBD 912 $a990000357490203316 951 $a001.53 WIE 1$b4636$c001.53$d00104956 959 $aBK 969 $aSCI 979 $aPATTY$b90$c20010313$lUSA01$h1321 979 $c20020403$lUSA01$h1643 979 $aPATRY$b90$c20040406$lUSA01$h1625 996 $aCybernetics$924762 997 $aUNISA LEADER 03924nam 2200505 450 001 9910483802703321 005 20210304094810.0 010 $a3-030-55251-9 024 7 $a10.1007/978-3-030-55251-0 035 $a(CKB)4100000011479498 035 $a(DE-He213)978-3-030-55251-0 035 $a(MiAaPQ)EBC6362812 035 $a(PPN)255204035 035 $a(EXLCZ)994100000011479498 100 $a20210304d2020 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKrylov methods for nonsymmetric linear systems $efrom theory to computations /$fGe?rard Meurant, Jurjen Duintjer Tebbens 205 $a1st ed. 2020. 210 1$aCham, Switzerland :$cSpringer,$d[2020] 210 4$d©2020 215 $a1 online resource (XIV, 686 p. 184 illus.) 225 1 $aSpringer series in computational mathematics ;$vVolume 57 311 $a3-030-55250-0 320 $aIncludes bibliographical references and index. 327 $a1. Notation, definitions and tools -- 2. Q-OR and Q-MR methods -- 3. Bases for Krylov subspaces -- 4. FOM/GMRES and variants -- 5. Methods equivalent to FOM or GMRES- 6. Hessenberg/CMRH -- 7. BiCG/QMR and Lanczos algorithms -- 8. Transpose-free Lanczos methods -- 9. The IDR family -- 10. Restart, deflation and truncation -- 11. Related topics -- 12. Numerical comparison of methods -- A. Test matrices and short biographical notices -- References -- Index. 330 $aThis book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing.The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods? implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations. 410 0$aSpringer series in computational mathematics ;$vVolume 57. 606 $aAlgebras, Linear 606 $aNumerical analysis 615 0$aAlgebras, Linear. 615 0$aNumerical analysis. 676 $a512.5 700 $aMeurant$b Ge?rard A.$0431205 702 $aDuintjer Tebbens$b Jurjen 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483802703321 996 $aKrylov methods for nonsymmetric linear systems$92287946 997 $aUNINA LEADER 01317nam0 22003011i 450 001 UON00437420 005 20231205104934.739 010 $a05-17-28286-0 100 $a20140331d1979 |0itac50 ba 101 $aeng 102 $aUS 105 $a||||b ||||| 200 1 $aˆThe ‰prints of the Ten Bamboo Studio$eFollowed by plates from the Kaempfer series and Perfect harmony$fPresentation and commentary by Joseph Vedlich 210 $a[New York]$cCrescent books$d [c1979] 215 $a122 p.$cill.$d28 cm 606 $aINCISIONI SU LEGNO$xCINA $xSEC. XVII-XVIII$3UONC085295$2FI 606 $aPITTURA CINESE$xSTAMPE A COLORI$xDINASTIA MING (1368-1912)$3UONC085296$2FI 620 $aUS$dNew York$3UONL000050 686 $aCIN IX J$cCINA - ARTI - ARTI GRAFICHE - CALLIGRAFIA - ARTI DELLA STAMPA$2A 700 1$aVEDLICH$bJoseph$3UONV220875$0712473 702 1$aKAEMPFER$bEngelbert$3UONV012147 712 $aCrescent Books$3UONV251284$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00437420 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI CIN IX J 039 $eSI 9026 7 039 996 $aPrints of the Ten Bamboo Studio$91328846 997 $aUNIOR