LEADER 01282nam0-2200397-i-450- 001 990009938580403321 005 20150206144659.0 010 $a978-0-8218-9496-5 035 $a000993858 035 $aFED01000993858 035 $a(Aleph)000993858FED01 035 $a000993858 100 $a20150205d2014----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $aa---a---101yy 200 1 $aTropical and idempotent mathematics and applications$einternational workshop Tropical and idempotent mathematics, August 26-31 2012, Independent university, Moscow, Russia.$fG. L. Litvinov, S. N. Sergeev editors 210 $aProvidence, RI$cAmerican mathematical society$d2014 215 $axii, 300 p.$d25 cm 225 1 $aContemporary mathematics$v616 610 0 $aMax-plus e algebre collegate 610 0 $aSemianelli 610 0 $aGrafi orientati (digrafi), tornei 676 $a516.3 700 1$aLitvinov,$bG. L.$0524582 701 1$aSergeev,$bS. N.$0524583 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a990009938580403321 952 $aC-1-(616$b671$fMA1 959 $aMA1 962 $a15A80 962 $a16Y60 962 $a05C20 996 $aTropical and idempotent mathematics and applications$9822098 997 $aUNINA LEADER 01128nam0 22002891i 450 001 UON00421051 005 20231205104822.511 010 $a978-48-315-1316-8 100 $a20130321d2012 |0itac50 ba 101 $ajpn 102 $aJP 105 $a|||| 1|||| 200 1 $aYoshimoto Takaaki no sengo$e1950-nendai no kiseki$fWatanabe Kazuyasu 210 $aTo?kyo?$cPerikansha$d2012 215 $a301 p.$d20 cm 606 $aLETTERATURA GIAPPONESE$xPERIODO SHOWA (1926-1989)$3UONC007979$2FI 620 $aJP$dTo?kyo?$3UONL000031 686 $aGIA VI BB$cGIAPPONE - LETTERATURA MODERNA E CONTEMPORANEA - CRITICA$2A 700 0$aWATANABE Kazuyasu$3UONV214666$0710403 702 0$aYOSHIMOTO Takaaki$3UONV040338 712 $aPerikan sha$3UONV248719$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00421051 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI GIA VI BB 214 N $eSI 4561 7 214 N 996 $aYoshimoto Takaaki no sengo$91333963 997 $aUNIOR LEADER 04250nam 22007695 450 001 9910300158803321 005 20250718152018.0 010 $a3-319-02663-1 024 7 $a10.1007/978-3-319-02663-3 035 $a(CKB)3710000000118064 035 $a(EBL)1730955 035 $a(OCoLC)884585383 035 $a(SSID)ssj0001244817 035 $a(PQKBManifestationID)11725413 035 $a(PQKBTitleCode)TC0001244817 035 $a(PQKBWorkID)11320470 035 $a(PQKB)10345160 035 $a(MiAaPQ)EBC1730955 035 $a(DE-He213)978-3-319-02663-3 035 $a(PPN)178785245 035 $a(EXLCZ)993710000000118064 100 $a20140522d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Mimetic Finite Difference Method for Elliptic Problems /$fby Lourenco Beirao da Veiga, Konstantin Lipnikov, Gianmarco Manzini 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (399 p.) 225 1 $aMS&A, Modeling, Simulation and Applications,$x2037-5263 ;$v11 300 $aDescription based upon print version of record. 311 08$a3-319-02662-3 320 $aIncludes bibliographical references and index. 327 $a1 Model elliptic problems -- 2 Foundations of mimetic finite difference method -- 3 Mimetic inner products and reconstruction operators -- 4 Mimetic discretization of bilinear forms -- 5 The diffusion problem in mixed form -- 6 The diffusion problem in primal form -- 7 Maxwells equations. 8. The Stokes problem. 9 Elasticity and plates -- 10 Other linear and nonlinear mimetic schemes -- 11 Analysis of parameters and maximum principles -- 12 Diffusion problem on generalized polyhedral meshes. 330 $aThis book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications. 410 0$aMS&A, Modeling, Simulation and Applications,$x2037-5263 ;$v11 606 $aMathematics$xData processing 606 $aMathematical physics 606 $aDifferential equations 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aComputational Mathematics and Numerical Analysis 606 $aMathematical Physics 606 $aDifferential Equations 606 $aMathematical and Computational Engineering Applications 615 0$aMathematics$xData processing. 615 0$aMathematical physics. 615 0$aDifferential equations. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 14$aComputational Mathematics and Numerical Analysis. 615 24$aMathematical Physics. 615 24$aDifferential Equations. 615 24$aMathematical and Computational Engineering Applications. 676 $a515.353 700 $aBeirao da Veiga$b Lourenco$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721660 702 $aLipnikov$b Konstantin$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aManzini$b Gianmarco$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300158803321 996 $aThe Mimetic Finite Difference Method for Elliptic Problems$92531403 997 $aUNINA