LEADER 03271nam 22006852 450 001 9910457717203321 005 20160427170801.0 010 $a1-107-15013-2 010 $a1-280-54012-5 010 $a9786610540129 010 $a0-511-21484-7 010 $a0-511-21663-7 010 $a0-511-21126-0 010 $a0-511-31541-4 010 $a0-511-54304-2 010 $a0-511-21303-4 035 $a(CKB)1000000000353015 035 $a(EBL)266622 035 $a(OCoLC)171139024 035 $a(SSID)ssj0000139444 035 $a(PQKBManifestationID)11136745 035 $a(PQKBTitleCode)TC0000139444 035 $a(PQKBWorkID)10010925 035 $a(PQKB)10386330 035 $a(UkCbUP)CR9780511543043 035 $a(MiAaPQ)EBC266622 035 $a(Au-PeEL)EBL266622 035 $a(CaPaEBR)ebr10131623 035 $a(CaONFJC)MIL54012 035 $a(OCoLC)124039379 035 $a(EXLCZ)991000000000353015 100 $a20090505d2004|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe direct method in soliton theory /$fRyogo Hirota ; translated from Japanese and edited by Atsushi Nagai, Jon Nimmo, and Claire Gilson$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2004. 215 $a1 online resource (xi, 200 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v155 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-83660-3 320 $aIncludes bibliographical references (p. 195-197) and index. 327 $a1. Bilinearization of soliton equations -- 2. Determinants and pfaffians -- 3. Structure of soliton equations -- 4. Backlund transformations -- Afterword -- References -- Index. 330 $aThe bilinear, or Hirota's direct, method was invented in the early 1970s as an elementary means of constructing soliton solutions that avoided the use of the heavy machinery of the inverse scattering transform and was successfully used to construct the multisoliton solutions of many new equations. In the 1980s the deeper significance of the tools used in this method - Hirota derivatives and the bilinear form - came to be understood as a key ingredient in Sato's theory and the connections with affine Lie algebras. The main part of this book concerns the more modern version of the method in which solutions are expressed in the form of determinants and pfaffians. While maintaining the original philosophy of using relatively simple mathematics, it has, nevertheless, been influenced by the deeper understanding that came out of the work of the Kyoto school. The book will be essential for all those working in soliton theory. 410 0$aCambridge tracts in mathematics ;$v155. 606 $aSolitons 615 0$aSolitons. 676 $a530.12/4 700 $aHirota$b Ryo?go$f1932-$0291230 702 $aNagai$b Atsushi 702 $aNimmo$b J. J. C$g(Jonathan J. C.), 702 $aGilson$b Claire 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910457717203321 996 $aDirect method in soliton theory$9748606 997 $aUNINA LEADER 01237nam0 22002891i 450 001 UON00417066 005 20231205104805.496 100 $a20130130d1968 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| ||||| 200 1 $aKalathiskos$fSophie Mereau$gmit einem Nachwort von Peter Schmidt 210 $aHeidelberg$cVerlag Lambert Schneider$dc1968 215 $a251, 43 p.$d17 cm. Faksimiledruck nach der Ausgabe von 1801-02. 410 1$1001UON00293351$12001 $aDeutsche Neudrucke. Reihe$eGoethezeit$1210 $aHeidelberg$cVerlag Lambert Schneider$d19- 606 $aLetteratura tedesca$xSec. 18.$3UONC062591$2FI 620 $aDE$dHeidelberg$3UONL000174 676 $a830.6$cLetteratura tedesca. Periodo classico, 1750-1830$v21 700 1$aMEREAU$bSophie$3UONV212988$0563779 702 1$aSCHMIDT$bPeter$3UONV129639 712 $aSchneider$3UONV248829$4650 801 $aIT$bSOL$c20251003$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00417066 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI TED 22 I MER 1 $eSI LO 28085 5 1 $sBuono 996 $aKalathiskos$91337939 997 $aUNIOR