LEADER 01263nam 2200325Ia 450 001 996396610403316 005 20221108074602.0 035 $a(CKB)4330000000360254 035 $a(EEBO)2240946115 035 $a(OCoLC)15050373 035 $a(EXLCZ)994330000000360254 100 $a19870109d1672 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 10$aZeiglographia, or, A new art of short-writing never before published$b[electronic resource] $emore easie, exact, short, and speedie, then any heretofore /$finvented & composed by Thomas Shelton .. 210 $aLondon $cPrinted by S.S. ...$d1672 215 $a[4], 16, [6], 17-48, [16], 49-55, [1] p 300 $a[6] p. of 2nd count and [16] p. of 5th count contain ms. notes in shorthand. 300 $aT.p. and [1] p. at end engraved. 300 $aReproduction of original in the University of Illinois (Urbana-Champaign Campus). Library. 330 $aeebo-0167 606 $aShorthand$vEarly works to 1800 615 0$aShorthand 700 $aShelton$b Thomas$f1601-1650?$01000886 801 1$bEAF 801 2$bWaOLN 906 $aBOOK 912 $a996396610403316 996 $aZeiglographia, or, A new art of short-writing never before published$92301216 997 $aUNISA LEADER 01026nam0 22002771i 450 001 UON00401430 005 20231205104658.150 010 $a978-96-396-5807-3 100 $a20111129d2007 |0itac50 ba 101 $ahun 102 $aHU 105 $a|||| 1|||| 200 1 $aLehet, mert kell$eReményik Sándor emlekezete$f[Válogatta., szerkesztette, összeállította David Gjula] 210 $aBudapest$cNap Kiado$d2007 215 $a281 p.$cill.$d21 cm. 620 $aHU$dBudapest$3UONL000090 676 $a894.511$cLetteratura ungherese$v21 700 1$aREMENYIK$bSandor$3UONV206962$0707155 702 1$aDAVID$bGyula$3UONV206963 712 $aNap Kiadó$3UONV274254$4650 801 $aIT$bSOL$c20250221$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00401430 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI A REMS 0001 $eSI EO 48418 5 0001 996 $aLehet, mert kell$91348253 997 $aUNIOR LEADER 09115nam 22005533 450 001 9911020043603321 005 20240521091126.0 010 $a9781119904953 010 $a1119904951 010 $a9781119904960 010 $a111990496X 035 $a(MiAaPQ)EBC31246934 035 $a(Au-PeEL)EBL31246934 035 $a(CKB)31320186400041 035 $a(Exl-AI)31246934 035 $a(OCoLC)1428904541 035 $a(EXLCZ)9931320186400041 100 $a20240405d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Redox Flow Technology 205 $a1st ed. 210 $cJohn Wiley & Sons, Inc$d2024 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (266 pages) 311 08$a9781119904793 311 08$a111990479X 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Membranes for Redox Flow Batteries -- 1.1 Introduction -- 1.2 Membranes Used in Aqueous Organic Redox Flow Batteries -- 1.2.1 Classification of Membranes Used in Aqueous Organic RFBs -- 1.2.1.1 Nafion-Based Membranes -- 1.2.1.2 Microporous Membranes -- 1.2.1.3 Anion-Exchange Membranes (AEMs) -- 1.2.1.4 Cation Exchange Membranes (CEMs) -- 1.3 Membranes Used in Non-Aqueous Redox Flow Batteries (NARFBs) -- 1.3.1 Stability of Membrane in Diverse Solvents -- 1.3.2 Ionic Permeability and Selectivity -- 1.3.3 Ionic Conductivity -- 1.3.4 Swelling -- 1.3.5 Mechanical and Chemical Stability -- 1.3.6 Cycling Performance -- 1.3.7 Classification of Membranes Used in NARFBs -- 1.3.7.1 Dense Membranes -- 1.3.7.2 Dense Ceramic Membranes -- 1.3.7.3 Porous Membranes -- 1.4 Ion-Exchange Membranes or Ion-Conducting Membranes for RFBs -- 1.4.1 Cation Ion Exchange Membrane (CEMs) -- 1.4.2 Anion Exchange Membrane (AEMs) -- 1.4.2.1 Preparation by Condensation Reaction of Ionic Monomeric Compounds -- 1.4.2.2 Preparation by Polymerization of Vinyl Monomers -- 1.4.2.3 Preparation from Conventional Polymers -- 1.4.2.4 Preparation by Plasma Polymerization -- 1.5 Polymer Electrolyte Membranes -- 1.5.1 Membrane Properties -- 1.5.1.1 Ion Exchange Capacity -- 1.5.1.2 Chemical Stability -- 1.5.1.3 Thermal Stability -- 1.5.1.4 Mechanical Property -- 1.5.1.5 Ionic Conductivity -- 1.5.1.6 Vanadium Ion Permeability -- 1.5.1.7 Water or Electrolyte Uptake -- 1.5.2 Transport Mechanisms -- 1.5.2.1 Proton Transport -- 1.5.2.2 Vanadium Ion Transport -- 1.5.2.3 Water (H2O) Transport -- 1.5.3 Membrane Preparation -- 1.5.3.1 Cation-Exchange Membrane (CEM) -- 1.5.4 Anion-Exchange Membrane -- 1.5.4.1 Polysulfone (PSF) -- 1.5.4.2 Poly(aryl-ether-ketone) (PAEK) -- 1.5.5 Amphoteric Membranes -- 1.5.6 Porous Membrane. 327 $a1.5.7 Polybenzimidazole (PBI) -- 1.5.8 Polyacrylonitrile (PAN) -- 1.6 Amphoteric Ion-Exchange Membranes -- 1.7 Protonated Polybenzimidazole (PBI) Membrane -- 1.8 Summary -- References -- Chapter 2 Electrolytes Materials for Redox Flow Batteries -- 2.1 Introduction -- 2.2 Overview of Redox Flow Battery -- 2.3 Measurement of the Capacity of the Redox Flow Battery -- 2.4 Formation of Redox-Active Constituents for RFB -- 2.4.1 Inorganic Redox Flow Battery -- 2.4.1.1 All Vanadium RFBs -- 2.4.1.2 Zinc/Bromine RFBs -- 2.4.1.3 Tin/Bromine Redox Flow Battery -- 2.4.1.4 Iron-Chromium RFB -- 2.4.1.5 Polysulfide-Bromine RFB -- 2.4.1.6 Titanium-Manganese Redox Flow Battery -- 2.4.2 Organic Redox Flow Battery -- 2.4.2.1 Quinone-Based Redox Active Materials -- 2.4.2.2 Tempo-Based Redox-Active Materials -- 2.4.2.3 Redox Active Materials Based on Alkoxybenzene -- 2.5 Hybrid Electrolytes Used in a Lithium Redox Flow Battery -- 2.6 Levelised Cost of the Redox Active Materials -- 2.7 Conclusion -- References -- Chapter 3 Zinc Hybrid Redox Flow Batteries -- 3.1 Introduction -- 3.2 Zn Electrode and Dendrite Formation -- 3.3 The Electrolyte -- 3.4 Effect of Temperature -- 3.5 The Membrane -- 3.6 Hydrogen Evolution Reaction -- 3.7 Conclusion -- References -- Chapter 4 Zinc-Bromine Hybrid Redox Flow Batteries -- 4.1 Introduction -- 4.2 Electro-Chemical Energy Storage -- 4.3 Redox Flow Batteries -- 4.4 Zinc/Bromine Flow Batteries -- 4.5 Types of Zinc-Based Hybrid Flow Batteries -- 4.5.1 Zinc-Sulphur (Zn-S) Hybrid Battery -- 4.5.2 Zinc-Nickel (Zn/Ni) Batteries -- 4.5.3 Zinc-Sodium Hybrid Ion Batteries (ZSHIBs) -- 4.5.4 Zn-Ion Batteries (ZIBs) -- 4.6 Electrochemistry of Zinc/Bromine Deposition -- 4.6.1 Electrochemical Performance -- 4.6.2 Reduction of Dendrite Deposition -- 4.6.3 Bio-Mass Electrocatalyst -- 4.6.4 Surface Chemistry -- 4.6.5 Effect of Zinc Utilization. 327 $a4.7 Applications of Zinc-Bromine Hybrid Flow Batteries -- 4.8 Future Challenges -- 4.8.1 Electric Vehicles -- 4.8.2 Energy Management -- 4.8.3 Size and Cost -- 4.8.4 Safety Measures -- 4.9 Conclusion -- References -- Chapter 5 Zinc-Cerium Hybrid Redox Flow Batteries -- 5.1 Introduction -- 5.1.1 Redox Flow Batteries (RFBs) -- 5.1.2 The Basic Concept of Redox Flow Batteries -- 5.1.3 Progress and Challenges in the Redox Flow Batteries -- 5.1.4 Types of Redox Flow Batteries -- 5.1.4.1 Aqueous Redox Flow Batteries -- 5.1.4.2 Nonaqueous Redox Flow Batteries -- 5.1.4.3 Hybrid Redox Flow Batteries -- 5.2 Zinc-Cerium Hybrid Redox Flow Battery -- 5.2.1 Working Principle of Zn-Ce Redox Flow Cell -- 5.2.1.1 Components of Zn-Ce Redox Flow Battery -- 5.2.2 Factors Affecting the Performance of Zn-Ce Redox Flow Battery -- 5.2.2.1 Temperature -- 5.2.2.2 Electrolyte Flow Rate -- 5.2.2.3 Current Density -- 5.2.2.4 Charge Conditions and Cycle Life -- 5.3 Summary -- Acknowledgment -- References -- Chapter 6 Vanadium Redox Flow Batteries (VRFB) -- 6.1 Introduction and Overview -- 6.1.1 Working Principle of VRFB -- 6.1.2 Main Components of the VRFB System -- 6.1.2.1 Electrodes -- 6.1.2.2 Electrolytes -- 6.1.2.3 Membranes -- 6.1.2.4 Bipolar Plates -- 6.2 VRFB System as Compared to Other Energy Storage Systems -- 6.3 Recent Research on VRFB -- 6.3.1 Positive and Negative Electrodes -- 6.3.2 Electrolytes -- 6.4 Conclusion and Perspective -- References -- Chapter 7 Vanadium-Based Redox Flow Batteries -- 7.1 Introduction -- 7.2 Redox Flow Batteries (RFBs) -- 7.2.1 The General Structure of RFBs -- 7.2.2 Working of Redox Flow Batteries -- 7.3 Types of Redox Flow Batteries -- 7.3.1 Iron/Chromium -- 7.3.2 All-Vanadium -- 7.3.3 Vanadium/Bromine -- 7.3.4 Bromine/Polysulfide -- 7.4 Vanadium Redox Flow Battery (VRFB) -- 7.4.1 Working Principle of Vanadium Redox Flow Battery. 327 $a7.4.2 Role of Different Components in VRFBs -- 7.4.2.1 Role of Membrane -- 7.4.2.2 Role of Electrolyte -- 7.4.2.3 Role of Electrode -- 7.5 Applications of Vanadium Redox Flow Batteries (VRFBs) -- 7.6 Summary -- References -- Chapter 8 System for the Redox Flow Technology -- 8.1 Introduction -- 8.2 General Construction of Redox Flow Battery -- 8.3 Energy Capacity -- 8.4 Optimization -- 8.5 Classification of RFB Based on Active Electrolyte -- 8.5.1 Inorganic Redox Flow Battery -- 8.5.1.1 Vanadium Redox Flow Battery -- 8.5.1.2 The Iron Redox Flow Battery (IRFB) -- 8.5.1.3 Polysulphide-Bromine Redox Flow Battery (PBBs) -- 8.5.1.4 Zinc-Polyiodide Redox Flow Battery -- 8.6 Organic Redox Flow Battery -- 8.7 Membrane-Less RFB -- 8.8 Semi-Solid RFB -- 8.9 Conclusion -- References -- Chapter 9 An Overview of Large-Scale Energy Storage Systems -- 9.1 Introduction -- 9.2 Progression of Energy Storage Method -- 9.3 Categorization of Energy Storage System -- 9.3.1 Mechanical Energy Storage -- 9.3.2 Thermal Energy Storage -- 9.3.3 Electrostatic and Magnetic Energy Storage System -- 9.3.4 The Electrochemical Energy Storage System -- 9.3.5 The Chemical Energy Storage System -- 9.4 Implementations of Energy Storage Systems -- 9.5 Commercial Prototype of Energy Storage Systems -- 9.6 Environmental Repercussions of Energy Storage Systems -- 9.7 Energy Storage Guidelines -- 9.8 Blockades and Effective Solutions -- 9.9 Future Prospects -- 9.10 Conclusion -- References -- Index -- EULA. 330 $aThis comprehensive work explores the advanced technology of redox flow batteries, focusing on key components such as membranes, electrolytes, and various battery systems including zinc hybrid, vanadium, and zinc-bromine hybrids. Edited by Inamuddin and Tariq Altalhi, it provides an in-depth analysis of membrane properties, electrolyte materials, and the operational mechanics of these batteries. The book aims to advance knowledge on energy storage technologies, targeting researchers, engineers, and professionals in the field of sustainable energy solutions.$7Generated by AI. 606 $aEnergy storage$7Generated by AI 606 $aMembranes (Technology)$7Generated by AI 615 0$aEnergy storage 615 0$aMembranes (Technology) 676 $a621.312424 700 $aInamuddin$0847455 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020043603321 996 $aAdvanced Redox Flow Technology$94420208 997 $aUNINA LEADER 02434nam 2200421 u 450 001 9910746600003321 005 20241010072023.0 010 $a9781501776113 010 $a1501776118 035 $a(CKB)28227954600041 035 $a(Perlego)4218358 035 $a(NjHacI)9928227954600041 035 $a(EXLCZ)9928227954600041 100 $a20231020d2023 uy | 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aWomen, Life, Freedom $eOur Fight for Human Rights and Equality in Iran 210 1$aIthaca, New York :$cCornell University Press,$d2023. 215 $a1 online resource (84 pages) 225 0 $aBrown Democracy Medal 311 08$a9781501776106 311 08$a150177610X 327 $aForeword / Jeff Kaufman -- Introduction -- The history of compulsory hijab -- The girls of Revolution Street -- Conclusion. 330 8 $aThe Laurence and Lynne Brown Democracy Medal, presented by the McCourtney Institute for Democracy at Penn State, recognizes outstanding individuals, groups, and organizations that produce innovations to further democracy in the United States or around the world. Nasrin Sotoudeh is an Iranian lawyer and human rights activist who has been called "Iran's Nelson Mandela." Sotoudeh is a longtime opponent of the death penalty, advocate of improving imprisonment health conditions, and an activist dedicated to fighting for the rights of women, children, religious and ethnic minorities, journalists and artists, and those facing execution. As a result of her advocacy, Sotoudeh has been repeatedly imprisoned by the Iranian government for crimes against the state; she served one sentence from 2010 to 2013 and was sentenced again in 2018 to thirty-eight years and six months in prison and 148 lashes. Her work has been featured in the 2020 documentary Nasrin, by filmmakers Jeff Kaufman and Marcia S. Ross. For this important work, she is the recipient of the 2023 Brown Democracy Medal from the McCourtney Institute for Democracy, marking the award's tenth year. 606 $aEquality$zIran 606 $aWomen's rights$zIran 615 0$aEquality 615 0$aWomen's rights 676 $a305.420955 700 $aSotoudeh$b Nasrin$01440077 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910746600003321 996 $aWomen, Life, Freedom$93602633 997 $aUNINA